Fangcheng Zhu

Results 62 comments of Fangcheng Zhu
trafficstars

> > Getting different results each time is normal, as any algorithm calibration comes with errors. If the differences in your results are not significant (such as a rotation of...

> 您好,麻烦您几个问题 1.Online Refinement阶段是继续做旋转激励(在原地像视频中一样旋转),还是做一些平移运动比较好(比如跑一个完整的回环指令) 2.外参数校准结果、特别是平移与设定的Online Refinement有很大关系,比如有时候我优化10s结果很好,而优化30s结果就很差,或者我有其他方法判断外参收敛到准确值吗 online_refinement阶段建议是继续沿三个轴画弧线,保证同时有旋转和平移激励(像视频中一样)。refine阶段实际上运行的是FAST-LIO2,其需要优化的状态量很多,所以不能保证外参标定精度有多高。我的经验和建议是多标定几次,计算几次initialization_result的均值作为最终的外参结果。

> what It seems strange. If a point cloud frame is splitted into 10 parts based on timestamps, each frame would only have a FoV of 36°, which could easily...

It seems that the device is car-like of which no sufficient excitation can be guaranteed. Current version does not support car-like device.

> rosbag This issue may be caused by an excessive number of points and the non-real-time lidar odometry. Due to the non-real-time case of LO, the IMU buffer stores a...

> ![wrong2](https://private-user-images.githubusercontent.com/38457117/299621509-527ed5f3-dc55-46a0-b966-38dcb354fc2a.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYyNDU0MDcsIm5iZiI6MTcwNjI0NTEwNywicGF0aCI6Ii8zODQ1NzExNy8yOTk2MjE1MDktNTI3ZWQ1ZjMtZGM1NS00NmEwLWI5NjYtMzhkY2IzNTRmYzJhLmdpZj9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAxMjYlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMTI2VDA0NTgyN1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWIxMDAyMzcyOTcwMDc1NjkwYmZhYzFhMjYxOWU3ZmE0ZmVlYzA3YWQzNjM3NmEwMWM1ZTQwNTE4ODQ2ODZhNmUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0._Ix42yl91653bZMaeRgZTyXkL_pY1H1BaVnx_u-A8fE) [ ![wrong2](https://private-user-images.githubusercontent.com/38457117/299621509-527ed5f3-dc55-46a0-b966-38dcb354fc2a.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYyNDU0MDcsIm5iZiI6MTcwNjI0NTEwNywicGF0aCI6Ii8zODQ1NzExNy8yOTk2MjE1MDktNTI3ZWQ1ZjMtZGM1NS00NmEwLWI5NjYtMzhkY2IzNTRmYzJhLmdpZj9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAxMjYlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMTI2VDA0NTgyN1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWIxMDAyMzcyOTcwMDc1NjkwYmZhYzFhMjYxOWU3ZmE0ZmVlYzA3YWQzNjM3NmEwMWM1ZTQwNTE4ODQ2ODZhNmUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0._Ix42yl91653bZMaeRgZTyXkL_pY1H1BaVnx_u-A8fE) ](https://private-user-images.githubusercontent.com/38457117/299621509-527ed5f3-dc55-46a0-b966-38dcb354fc2a.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYyNDU0MDcsIm5iZiI6MTcwNjI0NTEwNywicGF0aCI6Ii8zODQ1NzExNy8yOTk2MjE1MDktNTI3ZWQ1ZjMtZGM1NS00NmEwLWI5NjYtMzhkY2IzNTRmYzJhLmdpZj9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAxMjYlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMTI2VDA0NTgyN1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWIxMDAyMzcyOTcwMDc1NjkwYmZhYzFhMjYxOWU3ZmE0ZmVlYzA3YWQzNjM3NmEwMWM1ZTQwNTE4ODQ2ODZhNmUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0._Ix42yl91653bZMaeRgZTyXkL_pY1H1BaVnx_u-A8fE) [ ](https://private-user-images.githubusercontent.com/38457117/299621509-527ed5f3-dc55-46a0-b966-38dcb354fc2a.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MDYyNDU0MDcsIm5iZiI6MTcwNjI0NTEwNywicGF0aCI6Ii8zODQ1NzExNy8yOTk2MjE1MDktNTI3ZWQ1ZjMtZGM1NS00NmEwLWI5NjYtMzhkY2IzNTRmYzJhLmdpZj9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDAxMjYlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQwMTI2VDA0NTgyN1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWIxMDAyMzcyOTcwMDc1NjkwYmZhYzFhMjYxOWU3ZmE0ZmVlYzA3YWQzNjM3NmEwMWM1ZTQwNTE4ODQ2ODZhNmUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0JmFjdG9yX2lkPTAma2V5X2lkPTAmcmVwb19pZD0wIn0._Ix42yl91653bZMaeRgZTyXkL_pY1H1BaVnx_u-A8fE) > > Hi! Thanks for great work!! > > I ran the code in my setup using Velodyne 32 channels and found that...

> Thank you for your kind reply. It seems that I should use the result of initialization. > > However, the recommended value for cut_frame_num = 3 ~ 4 is...

> @zfc-zfc 您好!感谢优秀的工作。 我按照您在 #19 中的提示, 测试激光里程计时。发现对于机械式雷达,FAST-LO表现的都很好,但针对于固态雷达如mid-360或avia,效果则变得很不稳定,经常出现抖动的现象。为了排除我自己数据集的影响,我也下载了您上传的mid360_100ms_delay.bag进行了测试。 > > 使用的参数如下。 > > ``` > common: > lid_topic: "/livox/lidar" > imu_topic: "/livox/imu/async" > > preprocess: > lidar_type: 1 # Livox series...

> 首先非常感谢大佬的工作。 在尝试进行HAP激光雷达和外置IMU的标定时,似乎平移上存在一些问题,我们标定的场景是室内场景。 这是我的角速度和线加速度结果的截图,麻烦您帮我看看存在什么问题,非常感谢! ![gyr](https://user-images.githubusercontent.com/42641856/253545512-7b8bb2ef-a595-4200-9cd5-0331e93270a7.png) ![acc](https://user-images.githubusercontent.com/42641856/253545526-4b28c5e0-02c5-4130-86bd-97b23d2d1156.png) 看右下方这张图片,XY方向的加速度激励可能太小了,导致约束不足

> 那可以请问一下,为什么左下方图片中激光雷达里程计和IMU的X Y轴的加速度差别这么大吗?(可以明显看出一开始IMU的加速度的变化范围要比激光雷达里程计大) 加速度的变化范围不同是很正常的。刚体上任意两点AB的加速度与角速度关系是不同的,角速度满足 R\omega_A = \omega_B,所以AB两点的角速度norm相等;但加速度不是,AB两点的加速度关系可以参考论文公式(21),由于有角速度、角加速度和平移外参的存在,会导致AB的加速度norm不同。