Lightnessly
Lightnessly
output['hm']的sigmoid没有clip,如果出现0,或者1,focal loss 会有nan,把`output['hm'] = torch.clamp(output['hm'], min=1e-4, max=1-1e-4)`加在计算loss前即可
> > output['hm']的sigmoid没有clip,如果出现0,或者1,focal loss 会有nan,把`output['hm'] = torch.clamp(output['hm'], min=1e-4, max=1-1e-4)`加在计算loss前即可 > > ` > > ``` > output['hm'] = torch.clamp(output['hm'], min=1e-4, max=1 - 1e-4) > > hm_loss += self.crit(output['hm'], batch['hm']) /...
> > output['hm']的sigmoid没有clip,如果出现0,或者1,focal loss 会有nan,把`output['hm'] = torch.clamp(output['hm'], min=1e-4, max=1-1e-4)`加在计算loss前即可 > > > output['hm']的sigmoid没有clip,如果出现0,或者1,focal loss 会有nan,把`output['hm'] = torch.clamp(output['hm'], min=1e-4, max=1-1e-4)`加在计算loss前即可 > > 胡说八道,sigmoid函数输出范围是(0,1),nan的原因是landmarks没有归一化,不同尺寸脸,造成值差别很大 说话前先自己试试pytorch或者看看文档sigmoid的取值范围吧,要不然大脸太疼了呢。其次没归一化可能会导致前期loss发散很容易踩到极端值,不加保护才会出现nan。不加归一化也可以训哦。
When I test with type 1 it works but when it comes to type 4 the result is not good
have the same question I use the pytorch version and it works
我自己撸的 diffusers版本 720x480 49frames 7s一个step,用了 zero-2 + int8 adamw,4张A800 bs=1*4. 一样配置下 768x768x49 24s一个step 供参考
Your work is very helpful. The earth and the sky will praise your generosity, and countless algorithm engineers will praise you, the selfless devotee, the great architect.
Thanks, I'd like to try