MaxMax2016
MaxMax2016
如果训练数据很充足,神经网络能自动学习到发音规则;如果数据较少,转成音标再训练可以减少发音错误;
@jinfagang How did you succeed? I have the error like this : Traceback (most recent call last): File "vits_model.py", line 118, in example_outputs=(vits_output),) File "/usr/local/lib/python3.6/dist-packages/torch/onnx/__init__.py", line 28, in _export result...
@jinfagang my code and model are here:https://github.com/dtx525942103/vits_chinese/issues/3
[vits_Chinese.zip](https://github.com/jaywalnut310/vits/files/7230886/vits_Chinese.zip) I surprise to find VITS has not limit to phoneme length, so amazing
用的DB1那个数据集,它是1万句
@hemath1001 the chinese model :https://github.com/dtx525942103/vits_chinese/issues/3
> > [vits_Chinese.zip](https://github.com/jaywalnut310/vits/files/7230886/vits_Chinese.zip) I surprise to find VITS has not limit to phoneme length, so amazing > > 我很想问一下,后验编码器为啥使用线性谱,不直接使用mel谱呢?我看论文里mel重建损失也是用mel谱计算的。。 论文里面说的,使用线性普的效果比使用mel谱的效果更好
what is the status now? Do you know the training time on LJ? Thanks
@rendchevi good news
every thing is ok, no frequency horizontal line noise