RAREMed
RAREMed copied to clipboard
为何不能调batch_size呢,另求训练模型原始参数
作者你好,现在我按照readme里面操作之后,只要调整batch_size就会出现报错,应该是这段代码的问题:
def main_mask():
multi_target_dis = np.full((1, voc_size[0]), -1)
multi_target_pro = np.full((1, voc_size[1]), -1)
for i in range(batch_size):
multi_target_dis[i, 0:len(batch[i][0])] = batch[i][0]
multi_target_pro[i, 0:len(batch[i][1])] = batch[i][1]
修改为
actual_batch_size = len(batch) # 获取当前批次的实际大小
multi_target_dis = np.full((actual_batch_size, voc_size[0]), -1)
multi_target_pro = np.full((actual_batch_size, voc_size[1]), -1)
for i in range(actual_batch_size): # 使用实际批次大小循环
seq_length_dis = len(batch[i][0])
seq_length_pro = len(batch[i][1])
multi_target_dis[i, 0:seq_length_dis] = batch[i][0]
multi_target_pro[i, 0:seq_length_pro] = batch[i][1]
后预训练没问题,但是在后续的finetune出现了问题,求作者解答
另外所有都用默认参数就可以实现论文里的0.54左右的jaccard了吗,谢谢作者