yolov3-tf2
yolov3-tf2 copied to clipboard
python train.py Error during training?why?
(yolov3-tf2-cpu) (venv) M:\MachineLearning\yolov3-tf2>python train.py --dataset ./data/voc2007_train_stone.tfrecord
--val_dataset ./data/voc2007_val_stone.tfrecord --classes ./data/stone.names --num_classes 1 --mode fit --transfer
darknet --batch_size 4 --epochs 20 --weights ./checkpoints/yolov3.tf --weights_num_classes 80
2021-04-24 13:50:14.338255: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions tha
t this TensorFlow binary was not compiled to use: AVX
Epoch 1/20
2021-04-24 13:50:57.964647: W tensorflow/core/common_runtime/base_collective_executor.cc:217] BaseCollectiveExecuto
r::StartAbort Invalid argument: Paddings must be non-negative: 0 -12
[[{{node Pad}}]]
[[IteratorGetNext]]
2021-04-24 13:50:57.975653: I tensorflow/core/profiler/lib/profiler_session.cc:225] Profiler session started.
1/Unknown - 13s 13s/stepWARNING:tensorflow:Reduce LR on plateau conditioned on metric val_loss
which is not
available. Available metrics are: lr
W0424 13:50:57.973832 2388 callbacks.py:1934] Reduce LR on plateau conditioned on metric val_loss
which is not a
vailable. Available metrics are: lr
WARNING:tensorflow:Early stopping conditioned on metric val_loss
which is not available. Available metrics are:
W0424 13:50:57.973832 2388 callbacks.py:1286] Early stopping conditioned on metric val_loss
which is not availab
le. Available metrics are:
Epoch 00001: saving model to checkpoints/yolov3_train_1.tf
1/Unknown - 17s 17s/stepTraceback (most recent call last):
File "train.py", line 195, in
Function call stack: distributed_function
WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-8 W0424 13:51:03.144867 2388 util.py:144] Unresolved object in checkpoint: (root).layer-8 WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-9 W0424 13:51:03.144867 2388 util.py:144] Unresolved object in checkpoint: (root).layer-9 WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-10 W0424 13:51:03.144867 2388 util.py:144] Unresolved object in checkpoint: (root).layer-10 WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-11 W0424 13:51:03.144867 2388 util.py:144] Unresolved object in checkpoint: (root).layer-11 WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status objec t, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to m ake the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. W0424 13:51:03.144867 2388 util.py:152] A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Mo del.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details.
(yolov3-tf2-cpu) (venv) M:\MachineLearning\yolov3-tf2>
(yolov3-tf2-cpu) (venv) M:\MachineLearning\yolov3-tf2>
(yolov3-tf2-cpu) (venv) M:\MachineLearning\yolov3-tf2>python train.py --dataset ./dat
a/voc2007_train_stone.tfrecord --val_dataset ./data/voc2007_val_stone.tfrecord --classes ./data/stone.names --num_classes 1 --mode fit --transfer dark
net --batch_size 4 --epochs 20 --weights ./checkpoints/yolov3.tf --weights_num_classes 80
2021-04-24 14:16:12.964344: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not co
mpiled to use: AVX
Traceback (most recent call last):
File "train.py", line 197, in
(yolov3-tf2-cpu) (venv) M:\MachineLearning\yolov3-tf2>python train.py --dataset ./data/voc2007_train_stone.tfrecord --val_dataset ./data/voc2007_val_s
tone.tfrecord --classes ./data/stone.names --num_classes 1 --mode fit --transfer darknet --batch_size 4 --epochs 20 --weights ./checkpoints/yolov3.tf
--weights_num_classes 80
2021-04-24 14:18:51.426349: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not co
mpiled to use: AVX
Epoch 1/20
2021-04-24 14:19:34.278458: W tensorflow/core/common_runtime/base_collective_executor.cc:217] BaseCollectiveExecutor::StartAbort Invalid argument: Pad
dings must be non-negative: 0 -12
[[{{node Pad}}]]
[[IteratorGetNext]]
2021-04-24 14:19:34.290370: I tensorflow/core/profiler/lib/profiler_session.cc:225] Profiler session started.
1/Unknown - 13s 13s/stepWARNING:tensorflow:Reduce LR on plateau conditioned on metric val_loss
which is not available. Available metrics are:
lr
W0424 14:19:34.282967 1632 callbacks.py:1934] Reduce LR on plateau conditioned on metric val_loss
which is not available. Available metrics are: lr
WARNING:tensorflow:Early stopping conditioned on metric val_loss
which is not available. Available metrics are:
W0424 14:19:34.282967 1632 callbacks.py:1286] Early stopping conditioned on metric val_loss
which is not available. Available metrics are:
Epoch 00001: saving model to checkpoints/yolov3_train_1.tf
1/Unknown - 17s 17s/stepTraceback (most recent call last):
File "train.py", line 196, in
Function call stack: distributed_function
WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-8 W0424 14:19:38.904387 1632 util.py:144] Unresolved object in checkpoint: (root).layer-8 WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-9 W0424 14:19:38.904387 1632 util.py:144] Unresolved object in checkpoint: (root).layer-9 WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-10 W0424 14:19:38.904387 1632 util.py:144] Unresolved object in checkpoint: (root).layer-10 WARNING:tensorflow:Unresolved object in checkpoint: (root).layer-11 W0424 14:19:38.904387 1632 util.py:144] Unresolved object in checkpoint: (root).layer-11 WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were us ed. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. W0424 14:19:38.904387 1632 util.py:152] A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all check pointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_ partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mec hanics for details.
我也是这个问题,请问你是怎么解决的