PartSLIP2 icon indicating copy to clipboard operation
PartSLIP2 copied to clipboard

Unable to run the script (run_partslip.py)

Open jayaramreddy10 opened this issue 1 year ago • 0 comments

Hi,

Thanks for releasing the code. I am getting below issue when I try to run partslip script with masks.

Traceback (most recent call last): File "run_partslip.py", line 63, in Infer(f"./data/test/{category}/{model}/pc.ply", category, model, partnete_meta[category], zero_shot=False, save_dir=f"./result_ps/{category}/{model}") File "run_partslip.py", line 47, in Infer masks = glip_inference(glip_demo, save_dir, part_names, sam_predictor, num_views=num_views) File "/home/jayaram/PartSLIP2/src/glip_inference.py", line 70, in glip_inference result, top_predictions = glip_demo.run_on_web_image(image, part_names, 0.5) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/engine/predictor_glip.py", line 140, in run_on_web_image predictions = self.compute_prediction(original_image, original_caption, custom_entity) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/engine/predictor_glip.py", line 220, in compute_prediction predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/detector/generalized_vl_rcnn.py", line 284, in forward proposals, proposal_losses, fused_visual_features = self.rpn(images, visual_features, targets, language_dict_features, positive_map, File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 920, in forward proj_tokens, contrastive_logits, dot_product_logits, mlm_logits, shallow_img_emb_feats, fused_visual_features = self.head(features, File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 739, in forward dyhead_tower = self.dyhead_tower(feat_inputs) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/container.py", line 141, in forward input = module(input) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 228, in forward next_x = [self.relu(item) for item in next_x] File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 228, in next_x = [self.relu(item) for item in next_x] File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/layers/dyrelu.py", line 87, in forward y = self.fc(y).view(b, self.oup * self.exp, 1, 1) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/container.py", line 141, in forward input = module(input) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/linear.py", line 103, in forward return F.linear(input, self.weight, self.bias) File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/functional.py", line 1848, in linear return torch._C._nn.linear(input, weight, bias) RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)

Below are the library versions:

OS: Ubuntu 22.04 Python: 3.8.19 (I had to go for 3.8 because I was not able to install pytorch3d with 3.9, had an issue with below import command from pytorch3d.io import IO) Cuda: 11.3 Torch: 1.10.0

Please let me know if you need any other details?

jayaramreddy10 avatar Jun 25 '24 11:06 jayaramreddy10