unet-nested-multiple-classification
unet-nested-multiple-classification copied to clipboard
issue in training
INFO: Using device cuda INFO: Network: NestedUNet model 3 input channels 3 output channels (classes) Bilinear upscaling INFO: Creating dataset with 20 examples training stops after this. can anyone help
Could u give me a more detailed description of the error
RuntimeError: CUDA error: device-side assert triggered
Traceback (most recent call last):
File "train.py", line 254, in
Your category number is 3, so your label map should only contain 0,1 and 2, but your label map contain something else. Check your label map.
could not get it? Please give more details. Thanks
Check that your label map contains only 0,1, and 2. You can complete the check by running the following program:
import os
import os.path as osp
from tqdm import tqdm
import cv2
import numpy as np
num_classes = 3
mask_dir = "masks"
mask_names = os.listdir(mask_dir)
for mask_name in tqdm(mask_names):
mask_path = osp.join(mask_dir, mask_name)
mask = cv2.imread(mask_path, 0)
h, w = mask.shape[:2]
pix = []
for i in range(0, num_classes):
pix.append(len(np.where(mask==i)[0]))
if sum(pix) != h*w:
print("error: " + mask_name)
when i set the model='Unet',cannot run,could you help to reply me ,thinks
follow is the erros:
Traceback (most recent call last):
File ".\train.py", line 255, in
不能把category number的类别定义为mask的分割种类呢,即不需要再把mask的颜色种类重新按0,1,2,3这样排序,保留原本的颜色?
不能把category number的类别定义为mask的分割种类呢,即不需要再把mask的颜色种类重新按0,1,2,3这样排序,保留原本的颜色?
可以,但你需要对加载数据的代码做一些修改。
这代码只能运用于图像尺寸一样的数据集吗???