ofxTensorFlow2
ofxTensorFlow2 copied to clipboard
Training with larger image size - pix2pix
I managed to train images in format 256x256 and tried with format 512x512
in config.py
IMG_WIDTH = 512
IMG_HEIGHT = 512
got errors the following errors
Epoch 1 going on....
0%| | 0/40 [00:00<?, ?it/s]2022-06-26 00:18:30.959669: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
0%| | 0/40 [00:00<?, ?it/s]
Traceback (most recent call last):
File "main.py", line 96, in <module>
checkpoint, checkpoint_prefix
File "C:\Users\plesk\Documents\coding\of_v0.11.2_vs2017_release\addons\ofxTensorFlow2\example_pix2pix\python\src\training.py", line 143, in train
fit(train_dataset, test_dataset, EPOCHS)
File "C:\Users\plesk\Documents\coding\of_v0.11.2_vs2017_release\addons\ofxTensorFlow2\example_pix2pix\python\src\training.py", line 130, in fit
for input_image, target in tqdm(train_ds):
File "C:\Users\plesk\.conda\envs\inpaintEnv37\lib\site-packages\tqdm\std.py", line 1167, in __iter__
for obj in iterable:
File "C:\Users\plesk\.conda\envs\inpaintEnv37\lib\site-packages\tensorflow\python\data\ops\iterator_ops.py", line 761, in __next__
return self._next_internal()
File "C:\Users\plesk\.conda\envs\inpaintEnv37\lib\site-packages\tensorflow\python\data\ops\iterator_ops.py", line 747, in _next_internal
output_shapes=self._flat_output_shapes)
File "C:\Users\plesk\.conda\envs\inpaintEnv37\lib\site-packages\tensorflow\python\ops\gen_dataset_ops.py", line 2727, in iterator_get_next
_ops.raise_from_not_ok_status(e, name)
File "C:\Users\plesk\.conda\envs\inpaintEnv37\lib\site-packages\tensorflow\python\framework\ops.py", line 6941, in raise_from_not_ok_status
six.raise_from(core._status_to_exception(e.code, message), None)
File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.InvalidArgumentError: assertion failed: [Need value.shape >= size, got ] [2 286 286 3] [2 512 512 3]
[[{{node StatefulPartitionedCall/random_crop/Assert/Assert}}]] [Op:IteratorGetNext]
Is it possible to train larger sizes? Is it possible training rectangular format images?
hey, you should look where this number 286 is coming from. There is an augmentation step in dataset.py:
input_image, real_image = resize(input_image, real_image, 286, 286)
This may not be what you want. I think this is where your error happens but you need to adjust the model, too. You would want your model to produce higher resolution which is defined by the number of up conv blocks. Same goes for your input (conv blocks). You should definitely add a layer there, too.
Anyway, for those questions you should rather check out the original repository I am sure people have asked this already.
closed due to lack of response