K210_Yolo_framework
K210_Yolo_framework copied to clipboard
Yolo v3 framework base on tensorflow, support multiple models, multiple datasets, any number of output layers, any number of anchors, model prune, and portable model to K210 !
[toc]
K210 YOLO V3 framework
This is a clear, extensible yolo v3 framework
- [x] Real-time display recall and precision
- [x] Easy to use with other datasets
- [x] Support multiple model backbones and expand more
- [x] Support n number of output layers and m anchors
- [x] Support model weight pruning
- [x] Portable model to kendryte K210 chip
Training on Voc
Set Environment
Testing in ubuntu 18.04, Python 3.7.1
, Others in requirements.txt
.
Prepare dataset
first use yolo scripts:
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar
wget https://pjreddie.com/media/files/voc_label.py
python3 voc_label.py
cat 2007_train.txt 2007_val.txt 2012_*.txt > train.txt
now you have train.txt
, then merge img path and annotation to one npy file:
python3 make_voc_list.py xxxx/train.txt data/voc_img_ann.npy
Make anchors
Load the annotations generate anchors (LOW
and HIGH
depending on the distribution of dataset):
make anchors DATASET=voc ANCNUM=3 LOW='.0 .0' HIGH='1. 1.'
When success you will see figure like this:
NOTE: the kmeans result is random. when you get error , just rerun it.
If you want to use custom dataset, just write script and generate data/{dataset_name}_img_ann.npy
, Then use make anchors DATASET=dataset_name
. The more options please see with python3 ./make_anchor_list.py -h
If you want to change number of output layer, you should modify OUTSIZE
in Makefile
Download pre-trian model
You must download the model weights you want to train because I load the pre-train weights by default. And put the files into K210_Yolo_framework/data
directory.
My Demo use yolo_mobilev1 0.75
MODEL |
DEPTHMUL |
Url | Url |
---|---|---|---|
yolo_mobilev1 | 0.5 | google drive | weiyun |
yolo_mobilev1 | 0.75 | google drive | weiyun |
yolo_mobilev1 | 1.0 | google drive | weiyun |
yolo_mobilev2 | 0.5 | google drive | weiyun |
yolo_mobilev2 | 0.75 | google drive | weiyun |
yolo_mobilev2 | 1.0 | google drive | weiyun |
tiny_yolo | google drive | weiyun | |
yolo | google drive | weiyun |
NOTE: The mobilenet is not original, I have modified it to fit k210
Train
When you use mobilenet, you need to specify the DEPTHMUL
parameter. You don't need set DEPTHMUL
to use tiny yolo
or yolo
.
-
Set
MODEL
andDEPTHMUL
to start training:make train MODEL=xxxx DEPTHMUL=xx MAXEP=10 ILR=0.001 DATASET=voc CLSNUM=20 IAA=False BATCH=16
You can use
Ctrl+C
to stop training , it will auto save weights and model in log dir. -
Set
CKPT
to continue training:make train MODEL=xxxx DEPTHMUL=xx MAXEP=10 ILR=0.0005 DATASET=voc CLSNUM=20 IAA=False BATCH=16 CKPT=log/xxxxxxxxx/yolo_model.h5
-
Set
IAA
to enable data augment:make train MODEL=xxxx DEPTHMUL=xx MAXEP=10 ILR=0.0001 DATASET=voc CLSNUM=20 IAA=True BATCH=16 CKPT=log/xxxxxxxxx/yolo_model.h5
-
Use tensorboard:
tensorboard --logdir log
NOTE: The more options please see with python3 ./keras_train.py -h
Inference
make inference MODEL=xxxx DEPTHMUL=xx CLSNUM=xx CKPT=log/xxxxxx/yolo_model.h5 IMG=data/people.jpg
You can try with my model :
make inference MODEL=yolo_mobilev1 DEPTHMUL=0.75 CKPT=asset/yolo_model.h5 IMG=data/people.jpg
make inference MODEL=yolo_mobilev1 DEPTHMUL=0.75 CKPT=asset/yolo_model.h5 IMG=data/dog.jpg
NOTE: Since the anchor is randomly generated, your results will be different from the above image.You just need to load this model and continue training for a while.
The more options please see with python3 ./keras_inference.py -h
Prune Model
make train MODEL=xxxx MAXEP=1 ILR=0.0003 DATASET=voc CLSNUM=20 BATCH=16 PRUNE=True CKPT=log/xxxxxx/yolo_model.h5 END_EPOCH=1
When training finish, will save model as log/xxxxxx/yolo_prune_model.h5
.
Freeze
toco --output_file mobile_yolo.tflite --keras_model_file log/xxxxxx/yolo_model.h5
Now you have mobile_yolo.tflite
Convert Kmodel
Please refer nncase v0.1.0-RC5 example
Demo
Use kendryte-standalone-sdk v0.5.6
Use Kflash.py
kflash yolo3_frame_test_public/kfpkg/kpu_yolov3.kfpkg -B kd233 -p /dev/ttyUSB0 -b 2000000 -t
Use Kflash.py
kflash yolo3_frame_test_public_maixpy/kfpkg/kpu_yolov3.kfpkg -B goE -p /dev/ttyUSB1 -b 2000000 -t
NOTE: I just use kendryte yolov2 demo code to prove the validity of the model.
If you need standard yolov3 region layer code
, you can buy with me.
Caution
- Default parameter in
Makefile
-
OBJWEIGHT
,NOOBJWEIGHT
,WHWEIGHT
used to balance precision and recall - Default output two layers,if you want more output layers can modify
OUTSIZE
- If you want to use the full yolo, you need to modify the
IMGSIZE
andOUTSIZE
in the Makefile to the original yolo parameters