Fibro-CoSANet
Fibro-CoSANet copied to clipboard
Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital...
Fibro-CoSANet: Pulmonary Fibrosis Prognosis Prediction using a Convolutional Self Attention Network
Installation
-
git clone https://github.com/zabir-nabil/osic-pulmonary-fibrosis-progression.git
-
cd osic-pulmonary-fibrosis-progression
- Install Anaconda Anaconda
-
conda create -n pulmo python==3.7.5
-
conda activate pulmo
-
conda install -c intel mkl_fft
(opt.) -
conda install -c intel mkl_random
(opt.) -
conda install -c anaconda mkl-service
(opt.) -
pip install -r requirements.txt
Download Dataset
- Download the kaggle.json from Kaggle account. Kaggle authentication
- Keep the kaggle.json file inside data_download folder.
-
sudo mkdir /root/.kaggle
-
sudo cp kaggle.json /root/.kaggle/
-
sudo apt install unzip
if not installed already
-
cd data_download; python dataset_download.py; mv osic-pulmonary-fibrosis-progression.zip ../../; unzip ../../osic-pulmonary-fibrosis-progression.zip -d ../../; cd ../; python train_slopes.py
Training
- Set the training hyperparameters in
config.py
- Slope Prediction
- To train slopes model run
python train_slopes.py
- trained model weights and results will be saved inside
hyp.results_dir
- To train slopes model run
- Quantile Regression
- To train qreg model run
python train_qreg.py
- trained model weights and results will be saved inside
hyp.results_dir
- To train qreg model run
- Volume calculation: https://www.kaggle.com/furcifer/q-regression-with-ct-tabular-features-pytorch
Arxiv pre-print
https://arxiv.org/abs/2104.05889