centermask2
centermask2 copied to clipboard
The accuracy is 0
My server does not have 8 GPUs. When I use 4 GPUs for training (without any modification to the network), I just change num-gpus to 4. After training, the segmentation accuracy is always 0.00. Do you need to modify other parameters?
Did you update of the registered coco dataset? And what parameters and its values, you used in config file?
The following are the parameters we used in training without any modification. I don't quite understand what you mean by "the registered coco dataset"
/root/anaconda3/envs/detectron2/bin/python3.6 /jmx/centermask2/train_net.py --config-file configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml --num-gpus 4 Command Line Args: Namespace(config_file='configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml', dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=4, num_machines=1, opts=[], resume=False) Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2. Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2. Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2. Config 'configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' has no VERSION. Assuming it to be compatible with latest v2. [12/08 18:45:25 detectron2]: Rank of current process: 0. World size: 4 [12/08 18:45:27 detectron2]: Environment info:
sys.platform linux
Python 3.6.12 |Anaconda, Inc.| (default, Sep 8 2020, 23:10:56) [GCC 7.3.0]
numpy 1.19.4
detectron2 0.3 @/jmx/detectron2/detectron2
Compiler GCC 7.4
CUDA compiler CUDA 10.1
detectron2 arch flags 6.1
DETECTRON2_ENV_MODULE
PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
[12/08 18:45:27 detectron2]: Command line arguments: Namespace(config_file='configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml', dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=4, num_machines=1, opts=[], resume=False) [12/08 18:45:27 detectron2]: Contents of args.config_file=configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml: BASE: "Base-CenterMask-Lite-VoVNet.yaml"
MODEL: WEIGHTS: "/jmx/centermask2/models/vovnet19_ese_detectron2.pth" VOVNET: CONV_BODY : "V-19-eSE" SOLVER: STEPS: (300000, 340000) MAX_ITER: 360000 OUTPUT_DIR: "output/centermask/CenterMask-Lite-V-19-ms-4x"
[12/08 18:45:27 detectron2]: Running with full config: CUDNN_BENCHMARK: False DATALOADER: ASPECT_RATIO_GROUPING: True FILTER_EMPTY_ANNOTATIONS: True NUM_WORKERS: 0 REPEAT_THRESHOLD: 0.0 SAMPLER_TRAIN: TrainingSampler DATASETS: PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 PROPOSAL_FILES_TEST: () PROPOSAL_FILES_TRAIN: () TEST: ('coco_2017_val',) TRAIN: ('coco_2017_train',) GLOBAL: HACK: 1.0 INPUT: CROP: ENABLED: False SIZE: [0.9, 0.9] TYPE: relative_range FORMAT: BGR MASK_FORMAT: polygon MAX_SIZE_TEST: 1000 MAX_SIZE_TRAIN: 1000 MIN_SIZE_TEST: 600 MIN_SIZE_TRAIN: (580, 600) MIN_SIZE_TRAIN_SAMPLING: choice RANDOM_FLIP: horizontal MODEL: ANCHOR_GENERATOR: ANGLES: [[-90, 0, 90]] ASPECT_RATIOS: [[0.5, 1.0, 2.0]] NAME: DefaultAnchorGenerator OFFSET: 0.0 SIZES: [[32, 64, 128, 256, 512]] BACKBONE: FREEZE_AT: 0 NAME: build_fcos_vovnet_fpn_backbone DEVICE: cuda FCOS: CENTER_SAMPLE: True FPN_STRIDES: [8, 16, 32, 64, 128] INFERENCE_TH_TEST: 0.05 INFERENCE_TH_TRAIN: 0.05 IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] LOC_LOSS_TYPE: giou LOSS_ALPHA: 0.25 LOSS_GAMMA: 2.0 NMS_TH: 0.6 NORM: GN NUM_BOX_CONVS: 2 NUM_CLASSES: 80 NUM_CLS_CONVS: 2 NUM_SHARE_CONVS: 0 POST_NMS_TOPK_TEST: 50 POST_NMS_TOPK_TRAIN: 100 POS_RADIUS: 1.5 PRE_NMS_TOPK_TEST: 1000 PRE_NMS_TOPK_TRAIN: 1000 PRIOR_PROB: 0.01 SIZES_OF_INTEREST: [64, 128, 256, 512] THRESH_WITH_CTR: False TOP_LEVELS: 2 USE_DEFORMABLE: False USE_RELU: True USE_SCALE: True FPN: FUSE_TYPE: sum IN_FEATURES: ['stage3', 'stage4', 'stage5'] NORM: OUT_CHANNELS: 128 KEYPOINT_ON: False LOAD_PROPOSALS: False MASKIOU_LOSS_WEIGHT: 1.0 MASKIOU_ON: True MASK_ON: True META_ARCHITECTURE: GeneralizedRCNN MOBILENET: False PANOPTIC_FPN: COMBINE: ENABLED: True INSTANCES_CONFIDENCE_THRESH: 0.5 OVERLAP_THRESH: 0.5 STUFF_AREA_LIMIT: 4096 INSTANCE_LOSS_WEIGHT: 1.0 PIXEL_MEAN: [103.53, 116.28, 123.675] PIXEL_STD: [1.0, 1.0, 1.0] PROPOSAL_GENERATOR: MIN_SIZE: 0 NAME: FCOS RESNETS: DEFORM_MODULATED: False DEFORM_NUM_GROUPS: 1 DEFORM_ON_PER_STAGE: [False, False, False, False] DEPTH: 50 NORM: FrozenBN NUM_GROUPS: 1 OUT_FEATURES: ['res4'] RES2_OUT_CHANNELS: 256 RES5_DILATION: 1 STEM_OUT_CHANNELS: 64 STRIDE_IN_1X1: True WIDTH_PER_GROUP: 64 RETINANET: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) FOCAL_LOSS_ALPHA: 0.25 FOCAL_LOSS_GAMMA: 2.0 IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7'] IOU_LABELS: [0, -1, 1] IOU_THRESHOLDS: [0.4, 0.5] NMS_THRESH_TEST: 0.5 NORM: NUM_CLASSES: 80 NUM_CONVS: 4 PRIOR_PROB: 0.01 SCORE_THRESH_TEST: 0.05 SMOOTH_L1_LOSS_BETA: 0.1 TOPK_CANDIDATES_TEST: 1000 ROI_BOX_CASCADE_HEAD: BBOX_REG_WEIGHTS: ((10.0, 10.0, 5.0, 5.0), (20.0, 20.0, 10.0, 10.0), (30.0, 30.0, 15.0, 15.0)) IOUS: (0.5, 0.6, 0.7) ROI_BOX_HEAD: BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0) CLS_AGNOSTIC_BBOX_REG: False CONV_DIM: 256 FC_DIM: 1024 NAME: NORM: NUM_CONV: 0 NUM_FC: 0 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 SMOOTH_L1_BETA: 0.0 TRAIN_ON_PRED_BOXES: False ROI_HEADS: BATCH_SIZE_PER_IMAGE: 512 IN_FEATURES: ['p3', 'p4', 'p5'] IOU_LABELS: [0, 1] IOU_THRESHOLDS: [0.5] NAME: CenterROIHeads NMS_THRESH_TEST: 0.5 NUM_CLASSES: 80 POSITIVE_FRACTION: 0.25 PROPOSAL_APPEND_GT: True SCORE_THRESH_TEST: 0.05 ROI_KEYPOINT_HEAD: ASSIGN_CRITERION: ratio CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512) IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] LOSS_WEIGHT: 1.0 MIN_KEYPOINTS_PER_IMAGE: 1 NAME: KRCNNConvDeconvUpsampleHead NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True NUM_KEYPOINTS: 17 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 ROI_MASKIOU_HEAD: CONV_DIM: 128 NAME: MaskIoUHead NUM_CONV: 2 ROI_MASK_HEAD: ASSIGN_CRITERION: ratio CLS_AGNOSTIC_MASK: False CONV_DIM: 128 NAME: SpatialAttentionMaskHead NORM: NUM_CONV: 2 POOLER_RESOLUTION: 14 POOLER_SAMPLING_RATIO: 0 POOLER_TYPE: ROIAlignV2 RPN: BATCH_SIZE_PER_IMAGE: 256 BBOX_REG_LOSS_TYPE: smooth_l1 BBOX_REG_LOSS_WEIGHT: 1.0 BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0) BOUNDARY_THRESH: -1 HEAD_NAME: StandardRPNHead IN_FEATURES: ['res4'] IOU_LABELS: [0, -1, 1] IOU_THRESHOLDS: [0.3, 0.7] LOSS_WEIGHT: 1.0 NMS_THRESH: 0.7 POSITIVE_FRACTION: 0.5 POST_NMS_TOPK_TEST: 1000 POST_NMS_TOPK_TRAIN: 2000 PRE_NMS_TOPK_TEST: 6000 PRE_NMS_TOPK_TRAIN: 12000 SMOOTH_L1_BETA: 0.0 SEM_SEG_HEAD: COMMON_STRIDE: 4 CONVS_DIM: 128 IGNORE_VALUE: 255 IN_FEATURES: ['p2', 'p3', 'p4', 'p5'] LOSS_WEIGHT: 1.0 NAME: SemSegFPNHead NORM: GN NUM_CLASSES: 54 VOVNET: BACKBONE_OUT_CHANNELS: 256 CONV_BODY: V-19-eSE DEFORMABLE_GROUPS: 1 NORM: FrozenBN OUT_CHANNELS: 256 OUT_FEATURES: ['stage3', 'stage4', 'stage5'] STAGE_WITH_DCN: (False, False, False, False) WITH_MODULATED_DCN: False WEIGHTS: /jmx/centermask2/models/vovnet19_ese_detectron2.pth OUTPUT_DIR: output/centermask/CenterMask-Lite-V-19-ms-4x SEED: -1 SOLVER: AMP: ENABLED: False BASE_LR: 0.01 BIAS_LR_FACTOR: 1.0 CHECKPOINT_PERIOD: 10000 CLIP_GRADIENTS: CLIP_TYPE: value CLIP_VALUE: 1.0 ENABLED: False NORM_TYPE: 2.0 GAMMA: 0.1 IMS_PER_BATCH: 16 LR_SCHEDULER_NAME: WarmupMultiStepLR MAX_ITER: 360000 MOMENTUM: 0.9 NESTEROV: False REFERENCE_WORLD_SIZE: 0 STEPS: (300000, 340000) WARMUP_FACTOR: 0.001 WARMUP_ITERS: 1000 WARMUP_METHOD: linear WEIGHT_DECAY: 0.0001 WEIGHT_DECAY_BIAS: 0.0001 WEIGHT_DECAY_NORM: 0.0 TEST: AUG: ENABLED: False FLIP: True MAX_SIZE: 4000 MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200) DETECTIONS_PER_IMAGE: 100 EVAL_PERIOD: 0 EXPECTED_RESULTS: [] KEYPOINT_OKS_SIGMAS: [] PRECISE_BN: ENABLED: False NUM_ITER: 200 VERSION: 2 VIS_PERIOD: 0 [12/08 18:45:27 detectron2]: Full config saved to output/centermask/CenterMask-Lite-V-19-ms-4x/config.yaml [12/08 18:45:27 d2.utils.env]: Using a generated random seed 27801612 [12/08 18:45:28 d2.engine.defaults]: Model: GeneralizedRCNN( (backbone): FPN( (fpn_lateral3): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1)) (fpn_output3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (fpn_lateral4): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1)) (fpn_output4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (fpn_lateral5): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1)) (fpn_output5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (top_block): LastLevelP6P7( (p6): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (p7): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) ) (bottom_up): VoVNet( (stem): Sequential( (stem_1/conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (stem_1/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) (stem_1/relu): ReLU(inplace=True) (stem_2/conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (stem_2/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05) (stem_2/relu): ReLU(inplace=True) (stem_3/conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (stem_3/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) (stem_3/relu): ReLU(inplace=True) ) (stage2): _OSA_stage( (OSA2_1): _OSA_module( (layers): ModuleList( (0): Sequential( (OSA2_1_0/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA2_1_0/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) (OSA2_1_0/relu): ReLU(inplace=True) ) (1): Sequential( (OSA2_1_1/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA2_1_1/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) (OSA2_1_1/relu): ReLU(inplace=True) ) (2): Sequential( (OSA2_1_2/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA2_1_2/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05) (OSA2_1_2/relu): ReLU(inplace=True) ) ) (concat): Sequential( (OSA2_1_concat/conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (OSA2_1_concat/norm): FrozenBatchNorm2d(num_features=256, eps=1e-05) (OSA2_1_concat/relu): ReLU(inplace=True) ) (ese): eSEModule( (avg_pool): AdaptiveAvgPool2d(output_size=1) (fc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1)) (hsigmoid): Hsigmoid() ) ) ) (stage3): _OSA_stage( (Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True) (OSA3_1): _OSA_module( (layers): ModuleList( (0): Sequential( (OSA3_1_0/conv): Conv2d(256, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA3_1_0/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05) (OSA3_1_0/relu): ReLU(inplace=True) ) (1): Sequential( (OSA3_1_1/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA3_1_1/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05) (OSA3_1_1/relu): ReLU(inplace=True) ) (2): Sequential( (OSA3_1_2/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA3_1_2/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05) (OSA3_1_2/relu): ReLU(inplace=True) ) ) (concat): Sequential( (OSA3_1_concat/conv): Conv2d(736, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (OSA3_1_concat/norm): FrozenBatchNorm2d(num_features=512, eps=1e-05) (OSA3_1_concat/relu): ReLU(inplace=True) ) (ese): eSEModule( (avg_pool): AdaptiveAvgPool2d(output_size=1) (fc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1)) (hsigmoid): Hsigmoid() ) ) ) (stage4): _OSA_stage( (Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True) (OSA4_1): _OSA_module( (layers): ModuleList( (0): Sequential( (OSA4_1_0/conv): Conv2d(512, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA4_1_0/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05) (OSA4_1_0/relu): ReLU(inplace=True) ) (1): Sequential( (OSA4_1_1/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA4_1_1/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05) (OSA4_1_1/relu): ReLU(inplace=True) ) (2): Sequential( (OSA4_1_2/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA4_1_2/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05) (OSA4_1_2/relu): ReLU(inplace=True) ) ) (concat): Sequential( (OSA4_1_concat/conv): Conv2d(1088, 768, kernel_size=(1, 1), stride=(1, 1), bias=False) (OSA4_1_concat/norm): FrozenBatchNorm2d(num_features=768, eps=1e-05) (OSA4_1_concat/relu): ReLU(inplace=True) ) (ese): eSEModule( (avg_pool): AdaptiveAvgPool2d(output_size=1) (fc): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1)) (hsigmoid): Hsigmoid() ) ) ) (stage5): _OSA_stage( (Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True) (OSA5_1): _OSA_module( (layers): ModuleList( (0): Sequential( (OSA5_1_0/conv): Conv2d(768, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA5_1_0/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05) (OSA5_1_0/relu): ReLU(inplace=True) ) (1): Sequential( (OSA5_1_1/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA5_1_1/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05) (OSA5_1_1/relu): ReLU(inplace=True) ) (2): Sequential( (OSA5_1_2/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (OSA5_1_2/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05) (OSA5_1_2/relu): ReLU(inplace=True) ) ) (concat): Sequential( (OSA5_1_concat/conv): Conv2d(1440, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) (OSA5_1_concat/norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05) (OSA5_1_concat/relu): ReLU(inplace=True) ) (ese): eSEModule( (avg_pool): AdaptiveAvgPool2d(output_size=1) (fc): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1)) (hsigmoid): Hsigmoid() ) ) ) ) ) (proposal_generator): FCOS( (iou_loss): IOULoss() (fcos_head): FCOSHead( (cls_tower): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): GroupNorm(32, 128, eps=1e-05, affine=True) (2): ReLU() (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): GroupNorm(32, 128, eps=1e-05, affine=True) (5): ReLU() ) (bbox_tower): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): GroupNorm(32, 128, eps=1e-05, affine=True) (2): ReLU() (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (4): GroupNorm(32, 128, eps=1e-05, affine=True) (5): ReLU() ) (share_tower): Sequential() (cls_logits): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (bbox_pred): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (ctrness): Conv2d(128, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (scales): ModuleList( (0): Scale() (1): Scale() (2): Scale() (3): Scale() (4): Scale() ) ) ) (roi_heads): CenterROIHeads( (mask_pooler): ROIPooler( (level_poolers): ModuleList( (0): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True) (1): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True) (2): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True) ) ) (mask_head): SpatialAttentionMaskHead( (mask_fcn1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (mask_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (spatialAtt): SpatialAttention( (conv): Conv2d(2, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (sigmoid): Sigmoid() ) (deconv): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2)) (predictor): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1)) ) (maskiou_head): MaskIoUHead( (maskiou_fcn1): Conv2d(129, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (maskiou_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (maskiou_fc1): Linear(in_features=6272, out_features=1024, bias=True) (maskiou_fc2): Linear(in_features=1024, out_features=1024, bias=True) (maskiou): Linear(in_features=1024, out_features=80, bias=True) (pooling): MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=False) ) ) ) [12/08 18:45:28 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(580, 600), max_size=1000, sample_style='choice'), RandomFlip()] [12/08 18:46:12 d2.data.datasets.coco]: Loading datasets/coco/annotations/instances_train2017.json takes 44.32 seconds. [12/08 18:46:14 d2.data.datasets.coco]: Loaded 118287 images in COCO format from datasets/coco/annotations/instances_train2017.json [12/08 18:46:38 d2.data.build]: Removed 1021 images with no usable annotations. 117266 images left. [12/08 18:46:52 d2.data.build]: Distribution of instances among all 80 categories:
category | #instances | category | #instances | category | #instances |
---|---|---|---|---|---|
person | 257253 | bicycle | 7056 | car | 43533 |
motorcycle | 8654 | airplane | 5129 | bus | 6061 |
train | 4570 | truck | 9970 | boat | 10576 |
traffic light | 12842 | fire hydrant | 1865 | stop sign | 1983 |
parking meter | 1283 | bench | 9820 | bird | 10542 |
cat | 4766 | dog | 5500 | horse | 6567 |
sheep | 9223 | cow | 8014 | elephant | 5484 |
bear | 1294 | zebra | 5269 | giraffe | 5128 |
backpack | 8714 | umbrella | 11265 | handbag | 12342 |
tie | 6448 | suitcase | 6112 | frisbee | 2681 |
skis | 6623 | snowboard | 2681 | sports ball | 6299 |
kite | 8802 | baseball bat | 3273 | baseball gl.. | 3747 |
skateboard | 5536 | surfboard | 6095 | tennis racket | 4807 |
bottle | 24070 | wine glass | 7839 | cup | 20574 |
fork | 5474 | knife | 7760 | spoon | 6159 |
bowl | 14323 | banana | 9195 | apple | 5776 |
sandwich | 4356 | orange | 6302 | broccoli | 7261 |
carrot | 7758 | hot dog | 2884 | pizza | 5807 |
donut | 7005 | cake | 6296 | chair | 38073 |
couch | 5779 | potted plant | 8631 | bed | 4192 |
dining table | 15695 | toilet | 4149 | tv | 5803 |
laptop | 4960 | mouse | 2261 | remote | 5700 |
keyboard | 2854 | cell phone | 6422 | microwave | 1672 |
oven | 3334 | toaster | 225 | sink | 5609 |
refrigerator | 2634 | book | 24077 | clock | 6320 |
vase | 6577 | scissors | 1464 | teddy bear | 4729 |
hair drier | 198 | toothbrush | 1945 | ||
total | 849949 | ||||
[12/08 18:46:52 d2.data.build]: Using training sampler TrainingSampler | |||||
[12/08 18:46:53 d2.data.common]: Serializing 117266 elements to byte tensors and concatenating them all ... | |||||
[12/08 18:47:04 d2.data.common]: Serialized dataset takes 451.21 MiB | |||||
[12/08 18:47:13 d2.engine.defaults]: Model: | |||||
GeneralizedRCNN( | |||||
(backbone): FPN( |
(fpn_lateral3): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral4): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral5): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1))
(fpn_output5): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(top_block): LastLevelP6P7(
(p6): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(p7): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bottom_up): VoVNet(
(stem): Sequential(
(stem_1/conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(stem_1/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(stem_1/relu): ReLU(inplace=True)
(stem_2/conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(stem_2/norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(stem_2/relu): ReLU(inplace=True)
(stem_3/conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(stem_3/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(stem_3/relu): ReLU(inplace=True)
)
(stage2): _OSA_stage(
(OSA2_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA2_1_0/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA2_1_0/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(OSA2_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA2_1_1/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA2_1_1/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(OSA2_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA2_1_2/conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA2_1_2/norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(OSA2_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA2_1_concat/conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA2_1_concat/norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(OSA2_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
(stage3): _OSA_stage(
(Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(OSA3_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA3_1_0/conv): Conv2d(256, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA3_1_0/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
(OSA3_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA3_1_1/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA3_1_1/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
(OSA3_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA3_1_2/conv): Conv2d(160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA3_1_2/norm): FrozenBatchNorm2d(num_features=160, eps=1e-05)
(OSA3_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA3_1_concat/conv): Conv2d(736, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA3_1_concat/norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(OSA3_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
(stage4): _OSA_stage(
(Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(OSA4_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA4_1_0/conv): Conv2d(512, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA4_1_0/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
(OSA4_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA4_1_1/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA4_1_1/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
(OSA4_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA4_1_2/conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA4_1_2/norm): FrozenBatchNorm2d(num_features=192, eps=1e-05)
(OSA4_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA4_1_concat/conv): Conv2d(1088, 768, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA4_1_concat/norm): FrozenBatchNorm2d(num_features=768, eps=1e-05)
(OSA4_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
(stage5): _OSA_stage(
(Pooling): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(OSA5_1): _OSA_module(
(layers): ModuleList(
(0): Sequential(
(OSA5_1_0/conv): Conv2d(768, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA5_1_0/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
(OSA5_1_0/relu): ReLU(inplace=True)
)
(1): Sequential(
(OSA5_1_1/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA5_1_1/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
(OSA5_1_1/relu): ReLU(inplace=True)
)
(2): Sequential(
(OSA5_1_2/conv): Conv2d(224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(OSA5_1_2/norm): FrozenBatchNorm2d(num_features=224, eps=1e-05)
(OSA5_1_2/relu): ReLU(inplace=True)
)
)
(concat): Sequential(
(OSA5_1_concat/conv): Conv2d(1440, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(OSA5_1_concat/norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(OSA5_1_concat/relu): ReLU(inplace=True)
)
(ese): eSEModule(
(avg_pool): AdaptiveAvgPool2d(output_size=1)
(fc): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
(hsigmoid): Hsigmoid()
)
)
)
)
)
(proposal_generator): FCOS(
(iou_loss): IOULoss()
(fcos_head): FCOSHead(
(cls_tower): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(32, 128, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(32, 128, eps=1e-05, affine=True)
(5): ReLU()
)
(bbox_tower): Sequential(
(0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): GroupNorm(32, 128, eps=1e-05, affine=True)
(2): ReLU()
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): GroupNorm(32, 128, eps=1e-05, affine=True)
(5): ReLU()
)
(share_tower): Sequential()
(cls_logits): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bbox_pred): Conv2d(128, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ctrness): Conv2d(128, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(scales): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
(3): Scale()
(4): Scale()
)
)
)
(roi_heads): CenterROIHeads(
(mask_pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
)
)
(mask_head): SpatialAttentionMaskHead(
(mask_fcn1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(mask_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(spatialAtt): SpatialAttention(
(conv): Conv2d(2, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(sigmoid): Sigmoid()
)
(deconv): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2))
(predictor): Conv2d(128, 80, kernel_size=(1, 1), stride=(1, 1))
)
(maskiou_head): MaskIoUHead(
(maskiou_fcn1): Conv2d(129, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(maskiou_fcn2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(maskiou_fc1): Linear(in_features=6272, out_features=1024, bias=True)
(maskiou_fc2): Linear(in_features=1024, out_features=1024, bias=True)
(maskiou): Linear(in_features=1024, out_features=80, bias=True)
(pooling): MaxPool2d(kernel_size=[2, 2], stride=[2, 2], padding=[0, 0], dilation=[1, 1], ceil_mode=False)
)
)
)
[12/08 18:47:13 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(580, 600), max_size=1000, sample_style='choice'), RandomFlip()]
[12/08 18:47:55 d2.data.datasets.coco]: Loading datasets/coco/annotations/instances_train2017.json takes 41.12 seconds.
[12/08 18:47:56 d2.data.datasets.coco]: Loaded 118287 images in COCO format from datasets/coco/annotations/instances_train2017.json
[12/08 18:48:20 d2.data.build]: Removed 1021 images with no usable annotations. 117266 images left.
[12/08 18:48:33 d2.data.build]: Using training sampler TrainingSampler
[12/08 18:48:34 d2.data.common]: Serializing 117266 elements to byte tensors and concatenating them all ...
[12/08 18:48:45 d2.data.common]: Serialized dataset takes 451.21 MiB
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
[12/08 18:48:54 fvcore.common.checkpoint]: Loading checkpoint from /jmx/centermask2/models/vovnet19_ese_detectron2.pth
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
[12/08 18:48:54 fvcore.common.checkpoint]: Some model parameters or buffers are not found in the checkpoint:
roi_heads.mask_head.mask_fcn2.{bias, weight}
proposal_generator.fcos_head.cls_tower.1.{weight, bias}
roi_heads.maskiou_head.maskiou.{weight, bias}
proposal_generator.fcos_head.ctrness.{weight, bias}
roi_heads.maskiou_head.maskiou_fc1.{weight, bias}
backbone.fpn_lateral3.{weight, bias}
roi_heads.mask_head.spatialAtt.conv.weight
backbone.top_block.p6.{bias, weight}
roi_heads.maskiou_head.maskiou_fcn1.{weight, bias}
proposal_generator.fcos_head.cls_logits.{weight, bias}
backbone.top_block.p7.{bias, weight}
proposal_generator.fcos_head.bbox_tower.1.{weight, bias}
proposal_generator.fcos_head.scales.1.scale
proposal_generator.fcos_head.bbox_tower.4.{bias, weight}
proposal_generator.fcos_head.bbox_pred.{bias, weight}
proposal_generator.fcos_head.scales.2.scale
backbone.fpn_lateral5.{bias, weight}
roi_heads.maskiou_head.maskiou_fcn2.{bias, weight}
backbone.fpn_lateral4.{bias, weight}
roi_heads.mask_head.deconv.{weight, bias}
roi_heads.mask_head.mask_fcn1.{bias, weight}
proposal_generator.fcos_head.scales.3.scale
roi_heads.mask_head.predictor.{weight, bias}
backbone.fpn_output3.{weight, bias}
proposal_generator.fcos_head.cls_tower.3.{bias, weight}
proposal_generator.fcos_head.scales.0.scale
proposal_generator.fcos_head.bbox_tower.0.{weight, bias}
backbone.fpn_output5.{bias, weight}
proposal_generator.fcos_head.cls_tower.0.{weight, bias}
proposal_generator.fcos_head.cls_tower.4.{bias, weight}
roi_heads.maskiou_head.maskiou_fc2.{bias, weight}
backbone.fpn_output4.{bias, weight}
proposal_generator.fcos_head.bbox_tower.3.{bias, weight}
proposal_generator.fcos_head.scales.4.scale
[12/08 18:48:54 fvcore.common.checkpoint]: The checkpoint state_dict contains keys that are not used by the model:
backbone.bottom_up.stem.stem_1/norm.num_batches_tracked
backbone.bottom_up.stem.stem_2/norm.num_batches_tracked
backbone.bottom_up.stem.stem_3/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.layers.0.OSA2_1_0/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.layers.1.OSA2_1_1/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.layers.2.OSA2_1_2/norm.num_batches_tracked
backbone.bottom_up.stage2.OSA2_1.concat.OSA2_1_concat/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.layers.0.OSA3_1_0/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.layers.1.OSA3_1_1/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.layers.2.OSA3_1_2/norm.num_batches_tracked
backbone.bottom_up.stage3.OSA3_1.concat.OSA3_1_concat/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.layers.0.OSA4_1_0/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.layers.1.OSA4_1_1/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.layers.2.OSA4_1_2/norm.num_batches_tracked
backbone.bottom_up.stage4.OSA4_1.concat.OSA4_1_concat/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.layers.0.OSA5_1_0/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.layers.1.OSA5_1_1/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.layers.2.OSA5_1_2/norm.num_batches_tracked
backbone.bottom_up.stage5.OSA5_1.concat.OSA5_1_concat/norm.num_batches_tracked
/jmx/detectron2/detectron2/structures/masks.py:345: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(, bool as_tuple) (Triggered internally at /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
item = item.nonzero().squeeze(1).cpu().numpy().tolist()
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
[W TensorIterator.cpp:918] Warning: Mixed memory format inputs detected while calling the operator. The operator will output contiguous tensor even if some of the inputs are in channels_last format. (function operator())
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step()
before optimizer.step()
. In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step()
before lr_scheduler.step()
. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step()
before optimizer.step()
. In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step()
before lr_scheduler.step()
. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step()
before optimizer.step()
. In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step()
before lr_scheduler.step()
. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
/root/anaconda3/envs/detectron2/lib/python3.6/site-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of lr_scheduler.step()
before optimizer.step()
. In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step()
before lr_scheduler.step()
. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
[12/08 18:49:08 d2.utils.events]: eta: 2 days, 12:45:56 iter: 19 total_loss: 3.564 loss_mask: 0.6932 loss_maskiou: 0.06747 loss_fcos_cls: 1.14 loss_fcos_loc: 0.9648 loss_fcos_ctr: 0.6922 time: 0.6086 data_time: 0.2780 lr: 1e-05 max_mem: 2960M
[12/08 18:49:08 d2.utils.events]: eta: 2 days, 13:25:44 iter: 19 total_loss: 3.564 loss_mask: 0.6932 loss_maskiou: 0.06747 loss_fcos_cls: 1.14 loss_fcos_loc: 0.9648 loss_fcos_ctr: 0.6922 time: 0.6118 data_time: 0.2780 lr: 1e-05 max_mem: 2960M
@jiameixia1202 I mean by "the registered coco dataset" you use coco dataset not custom dataset.
You can debug and check the pre_nms_top_n value in ''centermask/modeling/fcos/fcos_outputs/'
lines are:- candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
When cfg.SCORE_THRESH_TEST = 0.05 then self.pre_nms_thresh = 0.05. This value may cause of make pre_nms_top_n empty and make zero accuracy.
So, check if pre_nms_top_n is tensor([0, 0] or not.
I use the registered coco dataset, and I check the pre_ nms_ top_ n is tensor([0, 0] .
It is normal for me to test with the weight provided by you, but when I train myself, the accuracy is 0 (without modifying the network, data and parameters)
cfg.SCORE_THRESH_TEST = 0.05 then self.pre_nms_thresh = 0.05 How do I modify these two parameters?
You can modify it through config file ''configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' under MODEL and FCOS. If FCOS not exist, add it and modify the value 0.05 of INFERENCE_TH_TRAIN and INFERENCE_TH_TEST.
Like this: MODEL: FCOS: INFERENCE_TH_TRAIN: 0.05 INFERENCE_TH_TEST: 0.05
I'm sorry, there may be something wrong with what I just said, My current settings cfg.SCORE_ THRESH_ TEST = 0.05 then self.pre_ nms_ thresh = 0.05 You said this value may cause of make pre_ nms_ top_ n empty and make zero accuracy. I wonder why I can avoid this problem by modifying these two values
You can modify it through config file ''configs/centermask/centermask_lite_V_19_eSE_FPN_ms_4x.yaml' under MODEL and FCOS. If FCOS not exist, add it and modify the value 0.05 of INFERENCE_TH_TRAIN and INFERENCE_TH_TEST.
Like this: MODEL: FCOS: INFERENCE_TH_TRAIN: 0.05 INFERENCE_TH_TEST: 0.05
can we change the optimizer to Adam?