SRDenseNet-pytorch
SRDenseNet-pytorch copied to clipboard
PyTorch implementation of Image Super-Resolution Using Dense Skip Connections (ICCV 2017)
SRDenseNet
This repository is implementation of the "Image Super-Resolution Using Dense Skip Connections".

Requirements
- PyTorch 1.0.0
- Numpy 1.15.4
- Pillow 5.4.1
- h5py 2.8.0
- tqdm 4.30.0
Train
The coco2017 50K, Set5 dataset converted to HDF5 can be downloaded from the links below.
Dataset | Scale | Type | Link |
---|---|---|---|
coco2017 50K | 4 | Train | Download |
Set5 | 4 | Eval | Download |
Otherwise, you can use prepare.py
to create custom dataset.
python train.py --train-file "BLAH_BLAH/coco2017_x4.h5" \
--eval-file "BLAH_BLAH/Set5_x4.h5" \
--outputs-dir "BLAH_BLAH/outputs" \
--scale 4 \ # Only scale factor 4 can be used.
--lr 1e-4 \
--batch-size 16 \
--num-epochs 60 \
--num-workers 8 \
--seed 123
Test
Pre-trained weights can be downloaded from the links below.
Model | Scale | Link |
---|---|---|
SRDenseNet_All | 4 | Download |
The results are stored in the same path as the query image.
python test.py --weights-file "BLAH_BLAH/srdensenet_x4.pth" \
--image-file "data/ppt3.bmp" \
--scale 4
Results
PSNR was calculated on the Y channel.
Set5
Eval. Mat | Scale | SRDenseNet_All (Paper) | SRDenseNet_All (Ours) |
---|---|---|---|
PSNR | 4 | 32.02 | 31.80 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |