BARTABSA
BARTABSA copied to clipboard
RuntimeError freeze_support()
I'm following your readme, while using train.py in the dataset pengb I had this error:
` python train.py --dataset pengb/14lap
Read cache from caches/data_facebook/bart-base_pengb/14lap_False.pt.
The number of tokens in tokenizer 50265
50268 50273
input fields after batch(if batch size is 2):
tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 22])
src_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 41])
src_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
target fields after batch(if batch size is 2):
tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 22])
target_span: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,)
tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
training epochs started 2021-12-10-15-44-42-060416
Epoch 1/50: 0%| | 0/2850 [00:00<?, ?it/s, loss:{0:<6.5f}]Read cache from caches/data_facebook/bart-base_pengb/14lap_False.pt.
The number of tokens in tokenizer 50265
50268 50273
input fields after batch(if batch size is 2):
tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 22])
src_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 41])
src_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
target fields after batch(if batch size is 2):
tgt_tokens: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 22])
target_span: (1)type:numpy.ndarray (2)dtype:object, (3)shape:(2,)
tgt_seq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2])
training epochs started 2021-12-10-15-44-52-779581
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "C:\ProgramData\Anaconda3\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "C:\ProgramData\Anaconda3\lib\multiprocessing\spawn.py", line 125, in _main
prepare(preparation_data)
File "C:\ProgramData\Anaconda3\lib\multiprocessing\spawn.py", line 236, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "C:\ProgramData\Anaconda3\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
File "C:\ProgramData\Anaconda3\lib\runpy.py", line 265, in run_path
return _run_module_code(code, init_globals, run_name,
File "C:\ProgramData\Anaconda3\lib\runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "C:\ProgramData\Anaconda3\lib\runpy.py", line 87, in _run_code
exec(code, run_globals)
File "C:\Users\sp\.conda\envs\BARTABSA\project\BARTABSA-main\peng\train.py", line 155, in <module>
trainer.train(load_best_model=False)
File "C:\ProgramData\Anaconda3\lib\site-packages\fastNLP\core\trainer.py", line 667, in train
raise e
File "C:\ProgramData\Anaconda3\lib\site-packages\fastNLP\core\trainer.py", line 658, in train
self._train()
File "C:\ProgramData\Anaconda3\lib\site-packages\fastNLP\core\trainer.py", line 712, in _train
for batch_x, batch_y in self.data_iterator:
File "C:\ProgramData\Anaconda3\lib\site-packages\fastNLP\core\batch.py", line 266, in __iter__
for indices, batch_x, batch_y in self.dataiter:
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 359, in __iter__
return self._get_iterator()
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 305, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
File "C:\ProgramData\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py", line 918, in __init__
w.start()
File "C:\ProgramData\Anaconda3\lib\multiprocessing\process.py", line 121, in start
self._popen = self._Popen(self)
File "C:\ProgramData\Anaconda3\lib\multiprocessing\context.py", line 224, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "C:\ProgramData\Anaconda3\lib\multiprocessing\context.py", line 327, in _Popen
return Popen(process_obj)
File "C:\ProgramData\Anaconda3\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
prep_data = spawn.get_preparation_data(process_obj._name)
File "C:\ProgramData\Anaconda3\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
_check_not_importing_main()
File "C:\ProgramData\Anaconda3\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...`
Reading around it seems that : multiprocessing usually doesn't work in a console in Windows. When using a spawning system instead of fork, python must import modules and create state in the child process to get things to work. The outer script must be protected with a if name=="main": clause. I don't know where to change the code however. Any hints?
Maybe just set the ``num_workers'' in Trainer to 0 will solve this problem.