Retinanet-Pytorch icon indicating copy to clipboard operation
Retinanet-Pytorch copied to clipboard

ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part.

Open xyj176 opened this issue 2 years ago • 0 comments

--- load weight finish --- Setting up a new session... Max_iter = 120000, Batch_size = 20 Model will train on cuda:[0] --- Focal_loss alpha = 0.25 ,将对背景类进行衰减,请在目标检测任务中使用 --- --- Multiboxloss : α=0.25 γ=2 num_classes=21 Set optimizer : SGD ( Parameter Group 0 dampening: 0 initial_lr: 0.001 lr: 0.001 momentum: 0.9 nesterov: False weight_decay: 0.0005 ) Set scheduler : <torch.optim.lr_scheduler.MultiStepLR object at 0x00000248040508B0> Set lossfunc : multiboxloss( (loc_loss_fn): SmoothL1Loss() (cls_loss_fn): focal_loss() ) Start Train......


Traceback (most recent call last): File "D:\software\PyCharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev\pydevd.py", line 1491, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "D:\software\PyCharm\PyCharm Community Edition 2022.1.3\plugins\python-ce\helpers\pydev_pydev_imps_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "D:/code/ai/Retinanet/Retinanet-Pytorch-master/Demo_train.py", line 36, in trainer(net, train_dataset) File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Model\trainer.py", line 112, in call for iteration, (images, boxes, labels, image_names) in enumerate(data_loader): File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 435, in next data = self._next_data() File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 1085, in _next_data return self._process_data(data) File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data\dataloader.py", line 1111, in _process_data data.reraise() File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch_utils.py", line 428, in reraise raise self.exc_type(msg) ValueError: Caught ValueError in DataLoader worker process 0. Original Traceback (most recent call last): File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\worker.py", line 198, in _worker_loop data = fetcher.fetch(index) File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "D:\software\supermap\idesktopX\support\MiniConda\conda\envs\retinanet\lib\site-packages\torch\utils\data_utils\fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Dataset_VOC.py", line 48, in getitem image, boxes, labels = self.transform(image, boxes, labels) File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Transfroms.py", line 40, in call img, boxes, labels = t(img, boxes, labels) File "D:\code\ai\Retinanet\Retinanet-Pytorch-master\Data\Transfroms_utils.py", line 263, in call mode = random.choice(self.sample_options) File "mtrand.pyx", line 920, in numpy.random.mtrand.RandomState.choice ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (6,) + inhomogeneous part. 请问这是什么原因导致的呀

xyj176 avatar Sep 05 '23 05:09 xyj176