PointCNN
PointCNN copied to clipboard
Making Predictions
Hi,
I am trying to extract the prediction per point cloud being fed for inference one by one.
Forgive me for my ignorance, but I cannot see how to do this from the validation block of the code Can you give me some pointer on how to get from where I am so far: `
saver = tf.train.import_meta_graph(args.load_ckpt+'.meta')
saver.restore(sess, args.load_ckpt)
print('{}-Checkpoint loaded from {}!'.format(datetime.now(), args.load_ckpt))
data_val_placeholder = tf.placeholder(data_val.dtype, data_val.shape, name='data_val')
label_val_placeholder = tf.placeholder(tf.int64, label_val.shape, name='label_val'
for cloud_path in filenames:
if os.path.isfile(cloud_path):
#application specific on how to get ground truth for each pointcloud here
pc = pypcd.PointCloud.from_path(cloud_path)
if (pc.width==num_points):
label= label_dict[str(label)]
for j in range(0, num_points):
pc_arr[j] = [pc.pc_data['x'][j], pc.pc_data['y'][j], pc.pc_data['z'][j], pc.pc_data['normal_x'][j], pc.pc_data['normal_y'][j], pc.pc_data['normal_z'][j]]
data_val=np.expand_dims(pc_arr,axis=0)
label_val=np.expand_dims(label,axis=0)
sess.run(iterator_val.initializer, feed_dict={
data_val_placeholder: data_val,
label_val_placeholder: label_val,
})
`
I was wondering if there was some line you could use similar to `prediction = sess.run(get_prediction ...'
Any help would be appreciated.
Hi,
I have gotten a bit further and am able to get the predictions by iterating 1 step at a time through the hdf5 file and logging results to a file, however the issue is now, the predictions don't seem to match very well with the ground truth data even when run on training data.
My code is below, Am I missing some model initialisation step?
#!/usr/bin/python3
"""Validation On Classification Task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import shutil
import argparse
import importlib
import data_utils
import numpy as np
import pointfly as pf
import tensorflow as tf
from datetime import datetime
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--path', '-t', help='Path to data', required=True)
parser.add_argument('--path_val', '-v', help='Path to validation data')
parser.add_argument('--load_ckpt', '-l', help='Path to a check point file for load')
parser.add_argument('--save_folder', '-s', help='Path to folder for saving check points and summary', required=True)
parser.add_argument('--model', '-m', help='Model to use', required=True)
parser.add_argument('--setting', '-x', help='Setting to use', required=True)
parser.add_argument('--log', help='Log to FILE in save folder; use - for stdout (default is log.txt)', metavar='FILE', default='log.txt')
parser.add_argument('--no_timestamp_folder', help='Dont save to timestamp folder', action='store_true')
parser.add_argument('--no_code_backup', help='Dont backup code', action='store_true')
args = parser.parse_args()
if not args.no_timestamp_folder:
time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
root_folder = os.path.join(args.save_folder, '%s_%s_%s_%d' % (args.model, args.setting, time_string, os.getpid()))
else:
root_folder = args.save_folder
if not os.path.exists(root_folder):
os.makedirs(root_folder)
if args.log != '-':
sys.stdout = open(os.path.join(root_folder, args.log), 'w')
print('PID:', os.getpid())
print(args)
# model_path = os.path.join(os.path.dirname(__file__), args.model)
# sys.path.append(model_path)
model = importlib.import_module(args.model)
setting_path = os.path.join(os.path.dirname(__file__), args.model)
sys.path.append(setting_path)
print(setting_path)
setting = importlib.import_module(args.setting)
batch_size = setting.batch_size
sample_num = setting.sample_num
step_val = setting.step_val
rotation_range = setting.rotation_range
rotation_range_val = setting.rotation_range_val
scaling_range = setting.scaling_range
scaling_range_val = setting.scaling_range_val
jitter = setting.jitter
jitter_val = setting.jitter_val
pool_setting_val = None if not hasattr(setting, 'pool_setting_val') else setting.pool_setting_val
# Prepare inputs
print('{}-Preparing datasets...'.format(datetime.now()))
data_val, label_val = setting.load_fn(args.path_val)
if setting.save_ply_fn is not None:
folder = os.path.join(root_folder, 'pts')
print('{}-Saving samples as .ply files to {}...'.format(datetime.now(), folder))
sample_num_for_ply = min(512, data_val.shape[0])
if setting.map_fn is None:
data_sample = data_val[:sample_num_for_ply]
else:
data_sample_list = []
for idx in range(sample_num_for_ply):
data_sample_list.append(setting.map_fn(data_val[idx], 0)[0])
data_sample = np.stack(data_sample_list)
setting.save_ply_fn(data_sample, folder)
num_val = data_val.shape[0]
point_num = data_val.shape[1]
print('{}-{:d} validation samples.'.format(datetime.now(), num_val))
######################################################################
# Placeholders
indices = tf.placeholder(tf.int32, shape=(None, None, 2), name="indices")
xforms = tf.placeholder(tf.float32, shape=(None, 3, 3), name="xforms")
rotations = tf.placeholder(tf.float32, shape=(None, 3, 3), name="rotations")
jitter_range = tf.placeholder(tf.float32, shape=(1), name="jitter_range")
global_step = tf.Variable(0, trainable=False, name='global_step')
is_training = tf.placeholder(tf.bool, name='is_training')
data_val_placeholder = tf.placeholder(data_val.dtype, data_val.shape, name='data_val')
label_val_placeholder = tf.placeholder(tf.int64, label_val.shape, name='label_val')
handle = tf.placeholder(tf.string, shape=[], name='handle')
######################################################################
dataset_val = tf.data.Dataset.from_tensor_slices((data_val_placeholder, label_val_placeholder))
if setting.map_fn is not None:
dataset_val = dataset_val.map(lambda data, label: tuple(tf.py_func(
setting.map_fn, [data, label], [tf.float32, label.dtype])), num_parallel_calls=setting.num_parallel_calls)
if setting.keep_remainder:
dataset_val = dataset_val.batch(batch_size)
batch_num_val = math.ceil(num_val / batch_size)
else:
dataset_val = dataset_val.apply(tf.contrib.data.batch_and_drop_remainder(batch_size))
batch_num_val = math.floor(num_val / batch_size)
iterator_val = dataset_val.make_initializable_iterator()
print('{}-{:d} testing batches per test.'.format(datetime.now(), batch_num_val))
iterator = tf.data.Iterator.from_string_handle(handle, dataset_val.output_types)
(pts_fts, labels) = iterator.get_next()
pts_fts_sampled = tf.gather_nd(pts_fts, indices=indices, name='pts_fts_sampled')
features_augmented = None
if setting.data_dim > 3:
points_sampled, features_sampled = tf.split(pts_fts_sampled,
[3, setting.data_dim - 3],
axis=-1,
name='split_points_features')
if setting.use_extra_features:
if setting.with_normal_feature:
if setting.data_dim < 6:
print('Only 3D normals are supported!')
exit()
elif setting.data_dim == 6:
features_augmented = pf.augment(features_sampled, rotations)
else:
normals, rest = tf.split(features_sampled, [3, setting.data_dim - 6])
normals_augmented = pf.augment(normals, rotations)
features_augmented = tf.concat([normals_augmented, rest], axis=-1)
else:
features_augmented = features_sampled
else:
points_sampled = pts_fts_sampled
points_augmented = pf.augment(points_sampled, xforms, jitter_range)
net = model.Net(points=points_augmented, features=features_augmented, is_training=is_training, setting=setting)
logits = net.logits
probs = tf.nn.softmax(logits, name='probs')
predictions = tf.argmax(probs, axis=-1, name='predictions')
labels_2d = tf.expand_dims(labels, axis=-1, name='labels_2d')
labels_tile = tf.tile(labels_2d, (1, tf.shape(logits)[1]), name='labels_tile')
loss_op = tf.losses.sparse_softmax_cross_entropy(labels=labels_tile, logits=logits)
with tf.name_scope('metrics'):
loss_mean_op, loss_mean_update_op = tf.metrics.mean(loss_op)
t_1_acc_op, t_1_acc_update_op = tf.metrics.accuracy(labels_tile, predictions)
t_1_per_class_acc_op, t_1_per_class_acc_update_op = tf.metrics.mean_per_class_accuracy(labels_tile,
predictions,
setting.num_class)
reset_metrics_op = tf.variables_initializer([var for var in tf.local_variables()
if var.name.split('/')[0] == 'metrics'])
_ = tf.summary.scalar('loss/val', tensor=loss_mean_op, collections=['val'])
_ = tf.summary.scalar('t_1_acc/val', tensor=t_1_acc_op, collections=['val'])
_ = tf.summary.scalar('t_1_per_class_acc/val', tensor=t_1_per_class_acc_op, collections=['val'])
# lr_exp_op = tf.train.exponential_decay(setting.learning_rate_base, global_step, setting.decay_steps,
# setting.decay_rate, staircase=True)
# lr_clip_op = tf.maximum(lr_exp_op, setting.learning_rate_min)
# _ = tf.summary.scalar('learning_rate', tensor=lr_clip_op, collections=['train'])
# reg_loss = setting.weight_decay * tf.losses.get_regularization_loss()
# if setting.optimizer == 'adam':
# optimizer = tf.train.AdamOptimizer(learning_rate=lr_clip_op, epsilon=setting.epsilon)
# elif setting.optimizer == 'momentum':
# optimizer = tf.train.MomentumOptimizer(learning_rate=lr_clip_op, momentum=setting.momentum, use_nesterov=True)
# update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# with tf.control_dependencies(update_ops):
# train_op = optimizer.minimize(loss_op + reg_loss, global_step=global_step)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
# saver = tf.train.Saver(max_to_keep=None)
# backup all code
if not args.no_code_backup:
code_folder = os.path.abspath(os.path.dirname(__file__))
shutil.copytree(code_folder, os.path.join(root_folder, os.path.basename(code_folder)))
# folder_ckpt = os.path.join(root_folder, 'ckpts')
# if not os.path.exists(folder_ckpt):
# os.makedirs(folder_ckpt)
folder_summary = os.path.join(root_folder, 'summary')
if not os.path.exists(folder_summary):
os.makedirs(folder_summary)
parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
print('{}-Parameter number: {:d}.'.format(datetime.now(), parameter_num))
with tf.Session() as sess:
#summaries_op = tf.summary.merge_all('train')
summaries_val_op = tf.summary.merge_all('val')
summary_writer = tf.summary.FileWriter(folder_summary, sess.graph)
sess.run(init_op)
######################################################################
# Load the model
if args.load_ckpt is not None:
#saver.restore(sess, args.load_ckpt)
saver = tf.train.import_meta_graph(args.load_ckpt+'.meta')
saver.restore(sess, args.load_ckpt)
print('{}-Checkpoint loaded from {}!'.format(datetime.now(), args.load_ckpt))
#handle_train = sess.run(iterator_train.string_handle())
handle_val = sess.run(iterator_val.string_handle())
# sess.run(iterator_train.initializer, feed_dict={
# data_train_placeholder: data_train,
# label_train_placeholder: label_train,
# })
sess.run(iterator_val.initializer, feed_dict={
data_val_placeholder: data_val,
label_val_placeholder: label_val,
})
for batch_idx_val in range(batch_num_val):
######################################################################
# Validation
print("Batch Index: "+str(batch_idx_val))
# sess.run(iterator.get_next(), feed_dict={
# data_val_placeholder: data_val,
# label_val_placeholder: label_val,
# })
#sess.run(reset_metrics_op)
if not setting.keep_remainder \
or num_val % batch_size == 0 \
or batch_idx_val != batch_num_val - 1:
batch_size_val = batch_size
else:
batch_size_val = num_val % batch_size
xforms_np, rotations_np = pf.get_xforms(batch_size_val,
rotation_range=rotation_range_val,
scaling_range=scaling_range_val,
order=setting.rotation_order)
# sess.run([loss_mean_update_op, t_1_acc_update_op, t_1_per_class_acc_update_op],
# feed_dict={
# handle: handle_val,
# indices: pf.get_indices(batch_size_val, sample_num, point_num,
# ),
# xforms: xforms_np,
# rotations: rotations_np,
# jitter_range: np.array([jitter_val]),
# is_training: False,
# })
# loss_val, t_1_acc_val, t_1_per_class_acc_val, summaries_val, step = sess.run(
# [loss_mean_op, t_1_acc_op, t_1_per_class_acc_op, summaries_val_op, global_step])
# summary_writer.add_summary(summaries_val, step)
# print('{}-[Val ]-Average: Loss: {:.4f} T-1 Acc: {:.4f} T-1 mAcc: {:.4f}'
# .format(datetime.now(), loss_val, t_1_acc_val, t_1_per_class_acc_val))
#
print('Prediction: Labels: ')
pred, label=sess.run([predictions, labels_tile], feed_dict={
handle: handle_val,
indices: pf.get_indices(batch_size_val, sample_num, point_num,
),
xforms: xforms_np,
rotations: rotations_np,
jitter_range: np.array([jitter_val]),
is_training: False,
})
print(pred)
print(label)
with open(os.path.join(root_folder,'UCD_prediction_log_pointcnn.txt'), 'a') as log_file:
log_file.write(str(pred)+','+str(label)+'\n')
sys.stdout.flush()
######################################################################
######################################################################
######################################################################
print('{}-Done!'.format(datetime.now()))
if __name__ == '__main__':
main()
and here is my setting file:
#!/usr/bin/python3
import os
import sys
import math
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import data_utils
load_fn = data_utils.load_cls
balance_fn = data_utils.balance_classes
map_fn = None
keep_remainder = True
save_ply_fn = None
#def save_ply_fn(data_sample, folder):
# data_utils.save_ply_point_with_normal(data_sample, folder)
num_class = 11
sample_num = 2048
batch_size = 1
num_epochs = 1
step_val = 1
learning_rate_base = 0.01
decay_steps = 8000
decay_rate = 0.5
learning_rate_min = 1e-6
weight_decay = 1e-5
jitter = 0.001
jitter_val = 0.0
rotation_range = [0, math.pi/36, 0, 'g']
rotation_range_val = [0, 0, 0, 'u']
rotation_order = 'rxyz'
scaling_range = [0.1, 0.1, 0.1, 'g']
scaling_range_val = [0, 0, 0, 'u']
sample_num_variance = 1 // 8
sample_num_clip = 1 // 4
x = 3
xconv_param_name = ('K', 'D', 'P', 'C', 'links')
xconv_params = [dict(zip(xconv_param_name, xconv_param)) for xconv_param in
[(8, 1, -1, 16 * x, []),
(12, 2, 384, 32 * x, []),
(16, 2, 128, 64 * x, []),
(16, 3, 128, 128 * x, [])]]
with_global = True
fc_param_name = ('C', 'dropout_rate')
fc_params = [dict(zip(fc_param_name, fc_param)) for fc_param in
[(128 * x, 0.0),
(64 * x, 0.8)]]
sampling = 'random'
optimizer = 'adam'
epsilon = 1e-2
data_dim = 7
use_extra_features = True
with_normal_feature = False
with_X_transformation = True
sorting_method = None
`
I have sorted it - The code is below. It may contain some unnecessary lines from the training code
#!/usr/bin/python3
"""Validation On Classification Task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import shutil
import argparse
import importlib
import data_utils
import numpy as np
import pointfly as pf
import tensorflow as tf
from datetime import datetime
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--path', '-t', help='Path to data', required=True)
parser.add_argument('--path_val', '-v', help='Path to validation data')
parser.add_argument('--load_ckpt', '-l', help='Path to a check point file for load')
parser.add_argument('--save_folder', '-s', help='Path to folder for saving check points and summary', required=True)
parser.add_argument('--model', '-m', help='Model to use', required=True)
parser.add_argument('--setting', '-x', help='Setting to use', required=True)
parser.add_argument('--log', help='Log to FILE in save folder; use - for stdout (default is log.txt)', metavar='FILE', default='log.txt')
parser.add_argument('--no_timestamp_folder', help='Dont save to timestamp folder', action='store_true')
parser.add_argument('--no_code_backup', help='Dont backup code', action='store_true')
args = parser.parse_args()
if not args.no_timestamp_folder:
time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
root_folder = os.path.join(args.save_folder, '%s_%s_%s_%d' % (args.model, args.setting, time_string, os.getpid()))
else:
root_folder = args.save_folder
if not os.path.exists(root_folder):
os.makedirs(root_folder)
if args.log != '-':
sys.stdout = open(os.path.join(root_folder, args.log), 'w')
print('PID:', os.getpid())
print(args)
# model_path = os.path.join(os.path.dirname(__file__), args.model)
# sys.path.append(model_path)
model = importlib.import_module(args.model)
setting_path = os.path.join(os.path.dirname(__file__), args.model)
sys.path.append(setting_path)
print(setting_path)
setting = importlib.import_module(args.setting)
batch_size = setting.batch_size
sample_num = setting.sample_num
step_val = setting.step_val
rotation_range = setting.rotation_range
rotation_range_val = setting.rotation_range_val
scaling_range = setting.scaling_range
scaling_range_val = setting.scaling_range_val
jitter = setting.jitter
jitter_val = setting.jitter_val
pool_setting_val = None if not hasattr(setting, 'pool_setting_val') else setting.pool_setting_val
# Prepare inputs
print('{}-Preparing datasets...'.format(datetime.now()))
data_val, label_val, pc_id_val = setting.load_fn(args.path_val)
if setting.save_ply_fn is not None:
folder = os.path.join(root_folder, 'pts')
print('{}-Saving samples as .ply files to {}...'.format(datetime.now(), folder))
sample_num_for_ply = min(512, data_val.shape[0])
if setting.map_fn is None:
data_sample = data_val[:sample_num_for_ply]
else:
data_sample_list = []
for idx in range(sample_num_for_ply):
data_sample_list.append(setting.map_fn(data_val[idx], 0)[0])
data_sample = np.stack(data_sample_list)
setting.save_ply_fn(data_sample, folder)
num_val = data_val.shape[0]
point_num = data_val.shape[1]
print('{}-{:d} validation samples.'.format(datetime.now(), num_val))
######################################################################
# Placeholders
indices = tf.placeholder(tf.int32, shape=(None, None, 2), name="indices")
xforms = tf.placeholder(tf.float32, shape=(None, 3, 3), name="xforms")
rotations = tf.placeholder(tf.float32, shape=(None, 3, 3), name="rotations")
jitter_range = tf.placeholder(tf.float32, shape=(1), name="jitter_range")
global_step = tf.Variable(0, trainable=False, name='global_step')
is_training = tf.placeholder(tf.bool, name='is_training')
data_val_placeholder = tf.placeholder(data_val.dtype, data_val.shape, name='data_val')
label_val_placeholder = tf.placeholder(tf.int64, label_val.shape, name='label_val')
pc_id_val_placeholder = tf.placeholder(tf.int64, pc_id_val.shape, name='pc_id_val')
handle = tf.placeholder(tf.string, shape=[], name='handle')
######################################################################
dataset_val = tf.data.Dataset.from_tensor_slices((data_val_placeholder, label_val_placeholder, pc_id_val_placeholder))
if setting.map_fn is not None:
dataset_val = dataset_val.map(lambda data, label: tuple(tf.py_func(
setting.map_fn, [data, label, pc_id], [tf.float32, label.dtype, pc_id.dtype])), num_parallel_calls=setting.num_parallel_calls)
if setting.keep_remainder:
dataset_val = dataset_val.batch(batch_size)
batch_num_val = math.ceil(num_val / batch_size)
else:
dataset_val = dataset_val.apply(tf.contrib.data.batch_and_drop_remainder(batch_size))
batch_num_val = math.floor(num_val / batch_size)
iterator_val = dataset_val.make_initializable_iterator()
print('{}-{:d} testing batches per test.'.format(datetime.now(), batch_num_val))
iterator = tf.data.Iterator.from_string_handle(handle, dataset_val.output_types)
(pts_fts, labels, pc_ids) = iterator.get_next()
pts_fts_sampled = tf.gather_nd(pts_fts, indices=indices, name='pts_fts_sampled')
features_augmented = None
if setting.data_dim > 3:
points_sampled, features_sampled = tf.split(pts_fts_sampled,
[3, setting.data_dim - 3],
axis=-1,
name='split_points_features')
if setting.use_extra_features:
if setting.with_normal_feature:
if setting.data_dim < 6:
print('Only 3D normals are supported!')
exit()
elif setting.data_dim == 6:
features_augmented = pf.augment(features_sampled, rotations)
else:
normals, rest = tf.split(features_sampled, [3, setting.data_dim - 6])
normals_augmented = pf.augment(normals, rotations)
features_augmented = tf.concat([normals_augmented, rest], axis=-1)
else:
features_augmented = features_sampled
else:
points_sampled = pts_fts_sampled
points_augmented = pf.augment(points_sampled, xforms, jitter_range)
net = model.Net(points=points_augmented, features=features_augmented, is_training=is_training, setting=setting)
logits = net.logits
probs_op = tf.nn.softmax(logits, name='probs')
saver = tf.train.Saver()
parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
print('{}-Parameter number: {:d}.'.format(datetime.now(), parameter_num))
with open(os.path.join(root_folder,'DOC_prediction_log_pointcnn.txt'), 'w') as log_file:
log_file.write("Cow ID, Reference, Inference\n")
prev_pc_id=0
with tf.Session() as sess:
#summaries_op = tf.summary.merge_all('train')
# summaries_val_op = tf.summary.merge_all('val')
# summary_writer = tf.summary.FileWriter(folder_summary, sess.graph)
#sess.run(init_op)
######################################################################
# Load the model
if args.load_ckpt is not None:
#saver.restore(sess, args.load_ckpt)
saver = tf.train.import_meta_graph(args.load_ckpt+'.meta')
saver.restore(sess, args.load_ckpt)
print('{}-Checkpoint loaded from {}!'.format(datetime.now(), args.load_ckpt))
#handle_train = sess.run(iterator_train.string_handle())
handle_val = sess.run(iterator_val.string_handle())
# sess.run(iterator_train.initializer, feed_dict={
# data_train_placeholder: data_train,
# label_train_placeholder: label_train,
# })
sess.run(iterator_val.initializer, feed_dict={
data_val_placeholder: data_val,
label_val_placeholder: label_val,
pc_id_val_placeholder: pc_id_val
})
for batch_idx_val in range(batch_num_val):
######################################################################
# Validation
print("Batch Index: "+str(batch_idx_val))
# sess.run(iterator.get_next(), feed_dict={
# data_val_placeholder: data_val,
# label_val_placeholder: label_val,
# })
#sess.run(init_op)
#sess.run(reset_metrics_op)
if not setting.keep_remainder \
or num_val % batch_size == 0 \
or batch_idx_val != batch_num_val - 1:
batch_size_val = batch_size
else:
batch_size_val = num_val % batch_size
xforms_np, rotations_np = pf.get_xforms(batch_size_val,
rotation_range=rotation_range_val,
scaling_range=scaling_range_val,
order=setting.rotation_order)
# sess.run([loss_mean_update_op, t_1_acc_update_op, t_1_per_class_acc_update_op],
# feed_dict={
# handle: handle_val,
# indices: pf.get_indices(batch_size_val, sample_num, point_num,
# ),
# xforms: xforms_np,
# rotations: rotations_np,
# jitter_range: np.array([jitter_val]),
# is_training: False,
# })
# loss_val, t_1_acc_val, t_1_per_class_acc_val, summaries_val, step = sess.run(
# [loss_mean_op, t_1_acc_op, t_1_per_class_acc_op, summaries_val_op, global_step])
# summary_writer.add_summary(summaries_val, step)
# print('{}-[Val ]-Average: Loss: {:.4f} T-1 Acc: {:.4f} T-1 mAcc: {:.4f}'
# .format(datetime.now(), loss_val, t_1_acc_val, t_1_per_class_acc_val))
#
print('Prediction: Labels: ')
probs, label, pc_id=sess.run([probs_op, labels, pc_ids], feed_dict={
handle: handle_val,
indices: pf.get_indices(batch_size_val, sample_num, point_num,
),
xforms: xforms_np,
rotations: rotations_np,
jitter_range: np.array([jitter_val]),
is_training: False,
})
pred = np.argmax(probs)
print(pred)
labels_2d = np.expand_dims(label, axis=-1)
print(labels_2d)
with open(os.path.join(root_folder,'DOC_prediction_log_pointcnn.txt'), 'a') as log_file:
log_file.seek(0, os.SEEK_END)
if(pc_id != prev_pc_id):
log_file.write('\n')
log_file.write(str(pc_id[0])+','+labels_2d[0][0]+',')
log_file.write(pred+',')
prev_pc_id=pc_id
sys.stdout.flush()
######################################################################
######################################################################
######################################################################
print('{}-Done!'.format(datetime.now()))
if __name__ == '__main__':
main()
Hi, What is the meaning of the pc_id, it seems like that the load_cls only have two return values.