rocm-gfx803
rocm-gfx803 copied to clipboard
Possible to update PyTorch build to support Torch 1.13.1 Rocm5.2?
Not sure how difficult it is, but is there a chance we might be able to get an updated build of PyTorch for Rocm5.2 with GFX803 enabled?
Currently the Rocm5.2 pytorch has gfx803 left out. and attempting to use xuhuisheng's build results in compatibility errors as other libraries are expecting the torch version to be 1.13.1 and torchvision 0.14.1.
Xuhuisheng's version is built on Torch 1.11.1 and Torchvision 0.12.0.
I'm certainly willing to willing to try and build it myself if anyone has a good guild on how to compile both Torch with Rocm (so far only found guides for Cuda) and TorchVision
You can build by yourself. Here is some sample build scripts for pytorch on gfx803. you can have a try. https://github.com/xuhuisheng/rocm-build/tree/master/gfx803#pytorch-190-crashed-on-gfx803
I've run stable-diffusion-webui with ROCm on Ubuntu 22.04.2 LTS successfully with unpatched rocm-5.4.3, pytorch built with PYTORCH_ROCM_ARCH=gfx803
.
https://github.com/tsl0922/pytorch-gfx803
I've run stable-diffusion-webui with ROCm on Ubuntu 22.04.2 LTS successfully with unpatched rocm-5.4.3, pytorch built with
PYTORCH_ROCM_ARCH=gfx803
.https://github.com/tsl0922/pytorch-gfx803
Good job, I think I will give a try SD on gfx803 again.
I am failing to build pytorch myself on Fedora with an endless stream of c errors. No idea what it going wrong. Would be much appreciated if you could give it another try on your Ubuntu system. Thanks!
Here is my build process on Ubuntu 22.04.2 for Pytorch 2.0.1-rc2 and Vision 0.15.2-rc2, both seem to work fine with the latest ROCm 5.5.0. All the steps are based on tsl0922 repository: https://github.com/tsl0922/pytorch-gfx803
Note that I'm not building MAGMA so UniPC sampler will fail to run.
Install cmake, sccache (on snapstore, use the store app)
Install dependencies
sudo apt install libopenmpi3 libstdc++-12-dev libdnnl-dev ninja-build libopenblas-dev libpng-dev libjpeg-dev
Install ROCm
sudo -i
sudo echo ROC_ENABLE_PRE_VEGA=1 >> /etc/environment
sudo echo HSA_OVERRIDE_GFX_VERSION=8.0.3 >> /etc/environment
# Reboot after this
wget https://repo.radeon.com/amdgpu-install/latest/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb
sudo apt install ./amdgpu-install_5.5.50500-1_all.deb
sudo amdgpu-install -y --usecase=rocm,hiplibsdk,mlsdk
sudo usermod -aG video $LOGNAME
sudo usermod -aG render $LOGNAME
# verify
rocminfo
clinfo
Build MAGMA if you need, I'm skipping this
git clone https://bitbucket.org/icl/magma.git
cd magma
# Setup make.inc check README
make -j16
make install
Build Torch
git clone --recursive https://github.com/pytorch/pytorch.git -b v2.0.1-rc2
cd pytorch
pip install cmake mkl mkl-include
pip install -r requirements.txt
sudo ln -s /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/lib/x86_64-linux-gnu/librt.so
export PATH=/opt/rocm/bin:$PATH ROCM_PATH=/opt/rocm HIP_PATH=/opt/rocm/hip
export PYTORCH_ROCM_ARCH=gfx803
export PYTORCH_BUILD_VERSION=2.0.0 PYTORCH_BUILD_NUMBER=1
export USE_CUDA=0 USE_ROCM=1 USE_NINJA=1
python3 tools/amd_build/build_amd.py
python3 setup.py bdist_wheel
pip install dist/torch-2.0.0-cp310-cp310-linux_x86_64.whl
Build Vision
git clone https://github.com/pytorch/vision.git -b v0.15.2-rc2
cd vision
export BUILD_VERSION=0.15.1
FORCE_CUDA=1 ROCM_HOME=/opt/rocm/ python3 setup.py bdist_wheel
pip install dist/torchvision-0.15.1-cp310-cp310-linux_x86_64.whl
Activate your venv environment in Automatic1111's webui and reinstall torch, torchvision with the built wheels after.
Here is my build process on Ubuntu 22.04.2 for Pytorch 2.0.1-rc2 and Vision 0.15.2-rc2, both seem to work fine with the latest ROCm 5.5.0. All the steps are based on tsl0922 repository: https://github.com/tsl0922/pytorch-gfx803
Note that I'm not building MAGMA so UniPC sampler will fail to run.
Install cmake, sccache (on snapstore, use the store app)
Install dependencies
sudo apt install libopenmpi3 libstdc++-12-dev libdnnl-dev ninja-build libopenblas-dev libpng-dev libjpeg-dev
Install ROCm
sudo -i sudo echo ROC_ENABLE_PRE_VEGA=1 >> /etc/environment sudo echo HSA_OVERRIDE_GFX_VERSION=8.0.3 >> /etc/environment # Reboot after this
wget https://repo.radeon.com/amdgpu-install/latest/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb sudo apt install ./amdgpu-install_5.5.50500-1_all.deb sudo amdgpu-install -y --usecase=rocm,hiplibsdk,mlsdk sudo usermod -aG video $LOGNAME sudo usermod -aG render $LOGNAME # verify rocminfo clinfo
Build MAGMA if you need, I'm skipping this
git clone https://bitbucket.org/icl/magma.git cd magma # Setup make.inc check README make -j16 make install
Build Torch
git clone --recursive https://github.com/pytorch/pytorch.git -b v2.0.1-rc2 cd pytorch pip install cmake mkl mkl-include pip install -r requirements.txt sudo ln -s /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/lib/x86_64-linux-gnu/librt.so export PATH=/opt/rocm/bin:$PATH ROCM_PATH=/opt/rocm HIP_PATH=/opt/rocm/hip export PYTORCH_ROCM_ARCH=gfx803 export PYTORCH_BUILD_VERSION=2.0.0 PYTORCH_BUILD_NUMBER=1 export USE_CUDA=0 USE_ROCM=1 USE_NINJA=1 python3 tools/amd_build/build_amd.py python3 setup.py bdist_wheel pip install dist/torch-2.0.0-cp310-cp310-linux_x86_64.whl
Build Vision
git clone https://github.com/pytorch/vision.git -b v0.15.2-rc2 cd vision export BUILD_VERSION=0.15.1 FORCE_CUDA=1 ROCM_HOME=/opt/rocm/ python3 setup.py bdist_wheel pip install dist/torchvision-0.15.1-cp310-cp310-linux_x86_64.whl
Activate your venv environment in Automatic1111's webui and reinstall torch, torchvision with the built wheels after.
gpu not detected in rocm sudo /opt/rocm-5.5.0/bin/rocm-smi
======================= ROCm System Management Interface ======================= WARNING: No AMD GPUs specified ================================= Concise Info ================================= GPU Temp (DieEdge) AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
============================= End of ROCm SMI Log ==============================
@WeirdWood thanks for your build process! I have also a RX 580 (8GB) and Linux Mint 21.2 and tried to follow your description. Unfortunatly the latest rocm version is now 5.6 - I tried it with 5.6 version and also with version 5.5.3 but both lead to a lot of troubles. Webui stops with an 'memory' error. Because my errors were printed in german I don't know the exactly english translation - but I think I run into this error: https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/11712 It seems to be an error in rocm itself. https://github.com/ROCm-Developer-Tools/clr/issues/4
Therefore I tried with exactly your version (5.5.0) and this finally worked. For others who want to do same build process:
you only have to change the line:
wget https://repo.radeon.com/amdgpu-install/latest/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb
with:
wget https://repo.radeon.com/amdgpu-install/5.5/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb
in WeirdWood's description.
Many thanks @WeirdWood !
@fidgety520 If you can describe your issue, would be great. Is your GPU a gfx803 generation? What OS are you using? What are you experiencing?
Any information would be useful
CPU rendering will always work, but takes several minutes when GPU takes usually seconds.
@fidgety520 which linux is running under your docker (I'm not familiar with docker installations) What is the exact error message ./webui.sh is returning you after the start? version of torch and torchvision is the own compiled, like WeirdWood has it described in this thread here: https://github.com/xuhuisheng/rocm-gfx803/issues/27#issuecomment-1534048619
@fidgety520 here is what I have done, but at one's own risk....
sudo apt autoremove rocm-core amdgpu-dkms
sudo apt install libopenmpi3 libstdc++-12-dev libdnnl-dev ninja-build libopenblas-dev libpng-dev libjpeg-dev
sudo -i
sudo echo ROC_ENABLE_PRE_VEGA=1 >> /etc/environment
sudo echo HSA_OVERRIDE_GFX_VERSION=8.0.3 >> /etc/environment
# Reboot after this
wget https://repo.radeon.com/amdgpu-install/5.5/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb
sudo apt install ./amdgpu-install_5.5.50500-1_all.deb
sudo amdgpu-install -y --usecase=rocm,hiplibsdk,mlsdk
sudo usermod -aG video $LOGNAME
sudo usermod -aG render $LOGNAME
# verify
rocminfo
clinfo
#Build Torch
git clone --recursive https://github.com/pytorch/pytorch.git -b v2.0.1-rc2
cd pytorch
pip install cmake mkl mkl-include
pip install -r requirements.txt
sudo ln -s /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/lib/x86_64-linux-gnu/librt.so
export PATH=/opt/rocm/bin:$PATH ROCM_PATH=/opt/rocm HIP_PATH=/opt/rocm/hip
export PYTORCH_ROCM_ARCH=gfx803
export PYTORCH_BUILD_VERSION=2.0.0 PYTORCH_BUILD_NUMBER=1
export USE_CUDA=0 USE_ROCM=1 USE_NINJA=1
python3 tools/amd_build/build_amd.py
python3 setup.py bdist_wheel
pip install dist/torch-2.0.0-cp310-cp310-linux_x86_64.whl --force-reinstall
cd ..
git clone https://github.com/pytorch/vision.git -b v0.15.2-rc2
cd vision
export BUILD_VERSION=0.15.1
FORCE_CUDA=1 ROCM_HOME=/opt/rocm/ python3 setup.py bdist_wheel
pip install dist/torchvision-0.15.1-cp310-cp310-linux_x86_64.whl --force-reinstall
# automatic
cd ..
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
cd stable-diffusion-webui
python3 -m venv venv
source venv/bin/activate
python -m pip install --upgrade pip wheel
pip uninstall torch torchvision
pip3 install /home/xxxxxx/pytorch/dist/torch-2.0.0-cp310-cp310-linux_x86_64.whl
pip3 install /home/xxxxxx/vision/dist/torchvision-0.15.1-cp310-cp310-linux_x86_64.whl
pip list | grep 'torch'
# edit: webui-user.sh
# change or add this lines:
# Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention"
export COMMANDLINE_ARGS="--no-half-vae --disable-nan-check --opt-split-attention --medvram --medvram-sdxl"
during compilation you have to agree some steps... credits for this steps go to WeirdWood and xuhuisheng
PS: xxxxxx in the path stands for your account name of home directory. If you compile it in another folder, you have to change this
Are there any other errors except those warnings during the compilation process. On my computer the compilation needed a very long time. I tried to upload my whl files on github (fork of this repo) but there is a limit of 25MB and torch-2.0.0-cp310-cp310-linux_x86_64.whl has a size of 165.4 MB Do you have a second gpu - maybe an internal - ob your pc? As I remember the segmentation error can also be a missing lib, but I haven't found the issue thread yet
In your /pytorch/dist/ folder. The whl file - is this from date after compilation or from date at (or before) download time
Only difference I'm aware is the deinstallation of rocm/amdgpu and the installation of libraries I missed during the process under linux mint. The download path of amd is also another, but with the "old" one there should happen an error at download - because file isn't anymore available in this folder on server. I'm very happy that it worked for you @fidgety520
here is an update for GFX803 - e.g. RX580 with pytorch v2.1.2 and automatic sd webui 1.7
sudo apt autoremove rocm-core amdgpu-dkms
sudo apt install libopenmpi3 libstdc++-12-dev libdnnl-dev ninja-build libopenblas-dev libpng-dev libjpeg-dev
sudo -i
sudo echo ROC_ENABLE_PRE_VEGA=1 >> /etc/environment
sudo echo HSA_OVERRIDE_GFX_VERSION=8.0.3 >> /etc/environment
# Reboot after this
wget https://repo.radeon.com/amdgpu-install/5.5/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb
sudo apt install ./amdgpu-install_5.5.50500-1_all.deb
sudo amdgpu-install -y --usecase=rocm,hiplibsdk,mlsdk
sudo usermod -aG video $LOGNAME
sudo usermod -aG render $LOGNAME
# verify
rocminfo
clinfo
#in home directory create directory pytorch2.1.2
#Build Torch
cd pytorch2.1.2
git clone --recursive https://github.com/pytorch/pytorch.git -b v2.1.2
cd pytorch
pip install cmake mkl mkl-include
pip install -r requirements.txt
sudo ln -s /usr/lib/x86_64-linux-gnu/librt.so.1 /usr/lib/x86_64-linux-gnu/librt.so
export PATH=/opt/rocm/bin:$PATH ROCM_PATH=/opt/rocm HIP_PATH=/opt/rocm/hip
export PYTORCH_ROCM_ARCH=gfx803
export PYTORCH_BUILD_VERSION=2.1.2 PYTORCH_BUILD_NUMBER=1
export USE_CUDA=0 USE_ROCM=1 USE_NINJA=1
python3 tools/amd_build/build_amd.py
python3 setup.py bdist_wheel
pip install dist/torch-2.0.0-cp310-cp310-linux_x86_64.whl --force-reinstall
cd ..
git clone https://github.com/pytorch/vision.git -b v0.16.2
cd vision
export BUILD_VERSION=0.16.2
FORCE_CUDA=1 ROCM_HOME=/opt/rocm/ python3 setup.py bdist_wheel
pip install dist/torchvision-0.15.1-cp310-cp310-linux_x86_64.whl --force-reinstall
# automatic
cd ..
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui
cd stable-diffusion-webui
python3 -m venv venv
source venv/bin/activate
python -m pip install --upgrade pip wheel
pip uninstall torch torchvision
pip3 install /home/*******/pytorch2.1.2/pytorch/dist/torch-2.1.2-cp310-cp310-linux_x86_64.whl
pip3 install /home/*******/pytorch2.1.2/vision/dist/torchvision-0.16.2-cp310-cp310-linux_x86_64.whl
pip list | grep 'torch'
see also: https://github.com/viebrix/pytorch-gfx803/tree/main
@viebrix Thank you for the write up!
I needed to update my server to 22.04 (was on 20.04) but was able to follow your guide and get it working on my RX580 successfully!
didnt worked for me, i got unrecognized comamnd line option for cc1plus
Building wheel torch-2.1.2
-- Building version 2.1.2
cmake --build . --target install --config Release -- -j 32
[13/725] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o
FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o
/opt/cache/bin/sccache /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DBUILD_ONEDNN_GRAPH -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_C10D_GLOO -DUSE_C10D_MPI -DUSE_DISTRIBUTED -DUSE_EXTERNAL_MZCRC -DUSE_RPC -DUSE_TENSORPIPE -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -I/dockerx/pytorch/build/aten/src -I/dockerx/pytorch/aten/src -I/dockerx/pytorch/build -I/dockerx/pytorch -I/dockerx/pytorch/cmake/../third_party/benchmark/include -I/dockerx/pytorch/third_party/onnx -I/dockerx/pytorch/build/third_party/onnx -I/dockerx/pytorch/third_party/foxi -I/dockerx/pytorch/build/third_party/foxi -I/dockerx/pytorch/torch/csrc/api -I/dockerx/pytorch/torch/csrc/api/include -I/dockerx/pytorch/caffe2/aten/src/TH -I/dockerx/pytorch/build/caffe2/aten/src/TH -I/dockerx/pytorch/build/caffe2/aten/src -I/dockerx/pytorch/build/caffe2/../aten/src -I/dockerx/pytorch/torch/csrc -I/dockerx/pytorch/third_party/miniz-2.1.0 -I/dockerx/pytorch/third_party/kineto/libkineto/include -I/dockerx/pytorch/third_party/kineto/libkineto/src -I/dockerx/pytorch/aten/src/ATen/.. -I/dockerx/pytorch/third_party/FXdiv/include -I/dockerx/pytorch/c10/.. -I/dockerx/pytorch/third_party/pthreadpool/include -I/dockerx/pytorch/third_party/cpuinfo/include -I/dockerx/pytorch/third_party/QNNPACK/include -I/dockerx/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/include -I/dockerx/pytorch/aten/src/ATen/native/quantized/cpu/qnnpack/src -I/dockerx/pytorch/third_party/cpuinfo/deps/clog/include -I/dockerx/pytorch/third_party/NNPACK/include -I/dockerx/pytorch/third_party/fbgemm/include -I/dockerx/pytorch/third_party/fbgemm -I/dockerx/pytorch/third_party/fbgemm/third_party/asmjit/src -I/dockerx/pytorch/third_party/ittapi/src/ittnotify -I/dockerx/pytorch/third_party/FP16/include -I/dockerx/pytorch/third_party/tensorpipe -I/dockerx/pytorch/build/third_party/tensorpipe -I/dockerx/pytorch/third_party/tensorpipe/third_party/libnop/include -I/dockerx/pytorch/third_party/fmt/include -I/dockerx/pytorch/build/third_party/ideep/mkl-dnn/include -I/dockerx/pytorch/third_party/ideep/mkl-dnn/src/../include -I/dockerx/pytorch/third_party/flatbuffers/include -isystem /dockerx/pytorch/build/third_party/gloo -isystem /dockerx/pytorch/cmake/../third_party/gloo -isystem /dockerx/pytorch/cmake/../third_party/tensorpipe/third_party/libuv/include -isystem /dockerx/pytorch/cmake/../third_party/googletest/googlemock/include -isystem /dockerx/pytorch/cmake/../third_party/googletest/googletest/include -isystem /dockerx/pytorch/third_party/protobuf/src -isystem /dockerx/pytorch/third_party/gemmlowp -isystem /dockerx/pytorch/third_party/neon2sse -isystem /dockerx/pytorch/third_party/XNNPACK/include -isystem /dockerx/pytorch/third_party/ittapi/include -isystem /dockerx/pytorch/cmake/../third_party/eigen -isystem /opt/ompi/include -isystem /dockerx/pytorch/third_party/ideep/mkl-dnn/include/oneapi/dnnl -isystem /dockerx/pytorch/third_party/ideep/include -isystem /dockerx/pytorch/build/include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -DHAVE_AVX2_CPU_DEFINITION -O3 -DNDEBUG -DNDEBUG -std=gnu++17 -fPIC -DTORCH_USE_LIBUV -DCAFFE2_USE_GLOO -DTH_HAVE_THREAD -Wall -Wextra -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-missing-braces -Wno-maybe-uninitialized -fvisibility=hidden -O2 -pthread -DASMJIT_STATIC -fopenmp -fopenmp -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o -c /dockerx/pytorch/torch/csrc/jit/ir/ir.cpp
/dockerx/pytorch/torch/csrc/jit/ir/ir.cpp: In member function ‘bool torch::jit::Node::hasSideEffects() const’:
/dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1191:16: error: ‘set_stream’ is not a member of ‘torch::jit::cuda’; did you mean ‘c10::cuda::set_stream’?
1191 | case cuda::set_stream:
| ^~~~~~~~~~
In file included from /dockerx/pytorch/torch/csrc/jit/ir/ir.h:18,
from /dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1:
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:228:11: note: ‘c10::cuda::set_stream’ declared here
228 | _(cuda, set_stream) \
| ^~~~~~~~~~
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:353:35: note: in definition of macro ‘DEFINE_SYMBOL’
353 | namespace ns { constexpr Symbol s(static_cast<unique_t>(_keys::ns##_##s)); }
| ^
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:354:1: note: in expansion of macro ‘FORALL_NS_SYMBOLS’
354 | FORALL_NS_SYMBOLS(DEFINE_SYMBOL)
| ^~~~~~~~~~~~~~~~~
/dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1192:16: error: ‘_set_device’ is not a member of ‘torch::jit::cuda’; did you mean ‘c10::cuda::_set_device’?
1192 | case cuda::_set_device:
| ^~~~~~~~~~~
In file included from /dockerx/pytorch/torch/csrc/jit/ir/ir.h:18,
from /dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1:
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:227:11: note: ‘c10::cuda::_set_device’ declared here
227 | _(cuda, _set_device) \
| ^~~~~~~~~~~
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:353:35: note: in definition of macro ‘DEFINE_SYMBOL’
353 | namespace ns { constexpr Symbol s(static_cast<unique_t>(_keys::ns##_##s)); }
| ^
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:354:1: note: in expansion of macro ‘FORALL_NS_SYMBOLS’
354 | FORALL_NS_SYMBOLS(DEFINE_SYMBOL)
| ^~~~~~~~~~~~~~~~~
/dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1193:16: error: ‘_current_device’ is not a member of ‘torch::jit::cuda’; did you mean ‘c10::cuda::_current_device’?
1193 | case cuda::_current_device:
| ^~~~~~~~~~~~~~~
In file included from /dockerx/pytorch/torch/csrc/jit/ir/ir.h:18,
from /dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1:
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:229:11: note: ‘c10::cuda::_current_device’ declared here
229 | _(cuda, _current_device) \
| ^~~~~~~~~~~~~~~
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:353:35: note: in definition of macro ‘DEFINE_SYMBOL’
353 | namespace ns { constexpr Symbol s(static_cast<unique_t>(_keys::ns##_##s)); }
| ^
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:354:1: note: in expansion of macro ‘FORALL_NS_SYMBOLS’
354 | FORALL_NS_SYMBOLS(DEFINE_SYMBOL)
| ^~~~~~~~~~~~~~~~~
/dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1194:16: error: ‘synchronize’ is not a member of ‘torch::jit::cuda’; did you mean ‘c10::cuda::synchronize’?
1194 | case cuda::synchronize:
| ^~~~~~~~~~~
In file included from /dockerx/pytorch/torch/csrc/jit/ir/ir.h:18,
from /dockerx/pytorch/torch/csrc/jit/ir/ir.cpp:1:
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:230:11: note: ‘c10::cuda::synchronize’ declared here
230 | _(cuda, synchronize) \
| ^~~~~~~~~~~
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:353:35: note: in definition of macro ‘DEFINE_SYMBOL’
353 | namespace ns { constexpr Symbol s(static_cast<unique_t>(_keys::ns##_##s)); }
| ^
/dockerx/pytorch/aten/src/ATen/core/interned_strings.h:354:1: note: in expansion of macro ‘FORALL_NS_SYMBOLS’
354 | FORALL_NS_SYMBOLS(DEFINE_SYMBOL)
| ^~~~~~~~~~~~~~~~~
At global scope:
cc1plus: warning: unrecognized command line option ‘-Wno-aligned-allocation-unavailable’
cc1plus: warning: unrecognized command line option ‘-Wno-unused-private-field’
cc1plus: warning: unrecognized command line option ‘-Wno-invalid-partial-specialization’
[44/725] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/runtime/register_prim_ops_fulljit.cpp.o
ninja: build stopped: subcommand failed.
is it possible that git clone --recursive https://github.com/pytorch/pytorch.git -b v2.1.2
had some error or stopped during download? I had to restart this line 4-5 times until everything was downloaded...
maybe can also be a problem with docker? I'm not familiar with docker.
is it possible that
git clone --recursive https://github.com/pytorch/pytorch.git -b v2.1.2
had some error or stopped during download? I had to restart this line 4-5 times until everything was downloaded...maybe can also be a problem with docker? I'm not familiar with docker.
not sure about docker, i passed throught all my hardware and its rocm docker, but yes i did had to run it like third time for it to clone correctly, but do i have to run it from scratch all the time? git submodule update would do similar thing ?
frankly speaking I don't know. I restarted every time the whole
git clone --recursive https://github.com/pytorch/pytorch.git -b v2.1.2
it seemed to me, that there is already something like a cache, so that not everything was downloaded again and again.
Did you reboot after the line # Reboot after this ?
Docker Rocm- it's necessary that you use the specific rocm version I did with the line: wget https://repo.radeon.com/amdgpu-install/5.5/ubuntu/jammy/amdgpu-install_5.5.50500-1_all.deb
I followed the exact steps in https://github.com/xuhuisheng/rocm-gfx803/issues/27#issuecomment-1892611849 The only difference is instead of compiling pytorch and pytorchvision from scratch, I used these precompiled binaries: https://github.com/tsl0922/pytorch-gfx803/releases It works now, thanks so much @viebrix