License_Plate_Detection_Pytorch
License_Plate_Detection_Pytorch copied to clipboard
I have successfully converted MTCNN and STN to onnx, but I have dimensional problems when I convert LPRNet to onnx
graph(%input.1 : Float(1, 3, 24, 94), %backbone.0.weight : Float(64, 3, 3, 3), %backbone.0.bias : Float(64), %backbone.1.weight : Float(64), %backbone.1.bias : Float(64), %backbone.1.running_mean : Float(64), %backbone.1.running_var : Float(64), %backbone.4.block.0.weight : Float(32, 64, 1, 1), %backbone.4.block.0.bias : Float(32), %backbone.4.block.2.weight : Float(32, 32, 3, 1), %backbone.4.block.2.bias : Float(32), %backbone.4.block.4.weight : Float(32, 32, 1, 3), %backbone.4.block.4.bias : Float(32), %backbone.4.block.6.weight : Float(128, 32, 1, 1), %backbone.4.block.6.bias : Float(128), %backbone.5.weight : Float(128), %backbone.5.bias : Float(128), %backbone.5.running_mean : Float(128), %backbone.5.running_var : Float(128), %backbone.8.block.0.weight : Float(64, 64, 1, 1), %backbone.8.block.0.bias : Float(64), %backbone.8.block.2.weight : Float(64, 64, 3, 1), %backbone.8.block.2.bias : Float(64), %backbone.8.block.4.weight : Float(64, 64, 1, 3), %backbone.8.block.4.bias : Float(64), %backbone.8.block.6.weight : Float(256, 64, 1, 1), %backbone.8.block.6.bias : Float(256), %backbone.9.weight : Float(256), %backbone.9.bias : Float(256), %backbone.9.running_mean : Float(256), %backbone.9.running_var : Float(256), %backbone.11.block.0.weight : Float(64, 256, 1, 1), %backbone.11.block.0.bias : Float(64), %backbone.11.block.2.weight : Float(64, 64, 3, 1), %backbone.11.block.2.bias : Float(64), %backbone.11.block.4.weight : Float(64, 64, 1, 3), %backbone.11.block.4.bias : Float(64), %backbone.11.block.6.weight : Float(256, 64, 1, 1), %backbone.11.block.6.bias : Float(256), %backbone.12.weight : Float(256), %backbone.12.bias : Float(256), %backbone.12.running_mean : Float(256), %backbone.12.running_var : Float(256), %backbone.16.weight : Float(256, 64, 1, 4), %backbone.16.bias : Float(256), %backbone.17.weight : Float(256), %backbone.17.bias : Float(256), %backbone.17.running_mean : Float(256), %backbone.17.running_var : Float(256), %backbone.20.weight : Float(68, 256, 13, 1), %backbone.20.bias : Float(68), %backbone.21.weight : Float(68), %backbone.21.bias : Float(68), %backbone.21.running_mean : Float(68), %backbone.21.running_var : Float(68), %container.0.weight : Float(68, 516, 1, 1), %container.0.bias : Float(68)):
Original python traceback for operator 14
in network torch-jit-export_predict
in exception above (most recent call last):
Traceback (most recent call last):
File "to_onnx_lpr.py", line 32, in
I tried to change the data format, but still liked this. Hope to get your reply, thank you!
Please tell me how to solve this problem: RuntimeError: Exporting the operator affine_grid_generator to ONNX opset version 10 is not supported. Thanks a lot!
@RongbaoHan @JF-Lee Did you guys succeed?
hi, how to convert stn to onnx?
when i convert stn to onnx, there is a error:
RuntimeError: Exporting the operator affine_grid_generator to ONNX opset version 9 is not supported.