fast-snarf
fast-snarf copied to clipboard
White line in demo on RTX 3090
Hello, thank you for your great work. I run your demo and find the output has strange white lines as the video shows. Do you know the reason?
https://user-images.githubusercontent.com/12268263/220037152-d7f411a1-a8c3-494b-ae76-01663bbfd117.mp4
To make the environment work in RTX 3090, I updated the cudatoolkit to 11.3. And then I installed the following package:
PyTorch version: 1.11.0
Is debug build: False
CUDA used to build PyTorch: 11.3
ROCM used to build PyTorch: N/A
OS: Ubuntu 18.04.6 LTS (x86_64)
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Clang version: Could not collect
CMake version: version 3.10.2
Libc version: glibc-2.27
Python version: 3.8.16 (default, Jan 17 2023, 23:13:24) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.15.0-191-generic-x86_64-with-glibc2.17
Is CUDA available: True
CUDA runtime version: 11.3.58
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090
Nvidia driver version: 465.19.01
cuDNN version: Probably one of the following:
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8
HIP runtime version: N/A
MIOpen runtime version: N/A
Versions of relevant libraries:
[pip3] numpy==1.23.5
[pip3] pytorch-lightning==1.5.0
[pip3] pytorch3d==0.7.2
[pip3] torch==1.11.0
[pip3] torchmetrics==0.11.1
[pip3] torchvision==0.12.0
[conda] blas 1.0 mkl http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
[conda] cudatoolkit 11.3.1 ha36c431_9 nvidia
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] mkl 2021.4.0 h06a4308_640 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl-service 2.4.0 py38h7f8727e_0 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl_fft 1.3.1 py38hd3c417c_0 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] mkl_random 1.2.2 py38h51133e4_0 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] numpy 1.23.5 py38h14f4228_0 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] numpy-base 1.23.5 py38h31eccc5_0 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
[conda] pytorch 1.11.0 py3.8_cuda11.3_cudnn8.2.0_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
[conda] pytorch-lightning 1.5.0 pypi_0 pypi
[conda] pytorch-mutex 1.0 cuda https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
[conda] pytorch3d 0.7.2 pypi_0 pypi
[conda] torchmetrics 0.11.1 pypi_0 pypi
[conda] torchvision 0.12.0 py38_cu113 https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
The same issue. Have you solved the problem? @yuangan
The same issue. Looking forward to a solution.
This might be because of the device of GPU. I tried 2080Ti, and the results were right.
The same issue. Looking forward to a solution.