embedding model bge-m3 how to set return_sparse=True ?
Note that the issue tracker is NOT the place for general support.
createing_embdding should be able to pass extra params, you can try it using Xinference Python client.
createing_embddingshould be able to pass extra params, you can try it using Xinference Python client.
encode() got an unexpected keyword argument 'return_sparse'. what's the keyword?
This issue is stale because it has been open for 7 days with no activity.
Hope it can be supported as soon as possible.
Hope it can be supported as soon as possible.
createing_embddingshould be able to pass extra params, you can try it using Xinference Python client.
我查看了源代码,发现这个问题的根本是由于使用snetence_transformer进行embedding,而s_t的编码都是稠密向量(仅以bge-m3为例,该模型在官方贴中提到了这一点[https://huggingface.co/BAAI/bge-m3]),所以无法解决这个问题。目前看来解决方法之一,是更改默认的框架,为用户提供出了sentence transformer以外的其他框架。问问官方后续有这步工作吗?如果有的话那么就不必重复造轮子?
默认只使用sentence transformer
return_sparse参数最终会放入forward方法,导致报错。
This issue is stale because it has been open for 7 days with no activity.