FPN
FPN copied to clipboard
Experimental result
Cool code! I wonder whether you have reimplemented the exact results of the FPN paper?
Best! guangxing
Have you trained this ?Can you tell me the results? @1292765944
I'm starting training...
When I was loading the trained model,I met this error:
Traceback (most recent call last):
File "./faster_rcnn/test_net.py", line 44, in
File "./faster_rcnn/../lib/networks/network.py", line 97, in make_var return tf.get_variable(name, shape, initializer=initializer, trainable=trainable, regularizer=regularizer) File "./faster_rcnn/../lib/networks/network.py", line 407, in fc regularizer=self.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY)) File "./faster_rcnn/../lib/networks/network.py", line 34, in layer_decorated layer_output = op(self, layer_input, *args, **kwargs)
The reason is that: #========= RCNN ============ .fc(n_classes, relu=False, name='cls_score')) in lib/networks/FPN_test.py. @xmyqsh
@1292765944 @Yc174 @chl916185
train result, rpn_loss is on the fly... What is the reason that may cause rpn_loss not converge, do you think ?
speed: 0.412s / iter image: 2008_000307.jpg iter: 199870 / 200000, total loss: 21.4851, rpn_loss_cls: 1.2544, rpn_loss_box: 19.9337, loss_cls: 0.2095, loss_box: 0.0876, lr: 0.0000 00 speed: 0.401s / iter image: 2008_005319.jpg iter: 199880 / 200000, total loss: 11.8511, rpn_loss_cls: 1.3227, rpn_loss_box: 10.2611, loss_cls: 0.2030, loss_box: 0.0643, lr: 0.0000 00 speed: 0.406s / iter image: 006483.jpg iter: 199890 / 200000, total loss: 25.3140, rpn_loss_cls: 1.1014, rpn_loss_box: 24.0750, loss_cls: 0.1176, loss_box: 0.0201, lr: 0.000000 speed: 0.395s / iter image: 002967.jpg iter: 199900 / 200000, total loss: 10.4668, rpn_loss_cls: 1.5063, rpn_loss_box: 8.6171, loss_cls: 0.2443, loss_box: 0.0990, lr: 0.000000 speed: 0.397s / iter image: 2011_001198.jpg iter: 199910 / 200000, total loss: 14.9206, rpn_loss_cls: 1.4058, rpn_loss_box: 13.2595, loss_cls: 0.2015, loss_box: 0.0537, lr: 0.000000 speed: 0.380s / iter image: 2008_003645.jpg iter: 199920 / 200000, total loss: 19.0740, rpn_loss_cls: 1.2057, rpn_loss_box: 17.1077, loss_cls: 0.5278, loss_box: 0.2328, lr: 0.000000 speed: 0.426s / iter image: 005811.jpg iter: 199930 / 200000, total loss: 10.8934, rpn_loss_cls: 1.4540, rpn_loss_box: 9.0603, loss_cls: 0.2846, loss_box: 0.0945, lr: 0.000000 speed: 0.439s / iter image: 2009_003860.jpg iter: 199940 / 200000, total loss: 14.3258, rpn_loss_cls: 1.6082, rpn_loss_box: 12.5498, loss_cls: 0.1635, loss_box: 0.0044, lr: 0.000000 speed: 0.388s / iter image: 2011_000556.jpg iter: 199950 / 200000, total loss: 22.7038, rpn_loss_cls: 1.2282, rpn_loss_box: 20.8446, loss_cls: 0.3576, loss_box: 0.2734, lr: 0.000000 speed: 0.397s / iter image: 2008_004585.jpg iter: 199960 / 200000, total loss: 11.1179, rpn_loss_cls: 1.3557, rpn_loss_box: 9.2402, loss_cls: 0.3512, loss_box: 0.1708, lr: 0.000000 speed: 0.346s / iter image: 2008_000393.jpg iter: 199970 / 200000, total loss: 11.2609, rpn_loss_cls: 1.7995, rpn_loss_box: 8.7590, loss_cls: 0.4851, loss_box: 0.2173, lr: 0.000000 speed: 0.371s / iter image: 2011_003081.jpg iter: 199980 / 200000, total loss: 10.4372, rpn_loss_cls: 1.4303, rpn_loss_box: 8.8616, loss_cls: 0.1440, loss_box: 0.0013, lr: 0.000000 speed: 0.342s / iter image: 2008_007069.jpg iter: 199990 / 200000, total loss: 19.8492, rpn_loss_cls: 1.3173, rpn_loss_box: 18.3676, loss_cls: 0.1637, loss_box: 0.0005, lr: 0.000000 speed: 0.356s / iter
the lr is 0.000000,why? @xmyqsh
@xmyqsh I met similar problem. It is not easy to converge using the params in FPN paper. such as 800 pixels of the shorter side, including anchor boxes that are outside the image.