CircleLoss_Face icon indicating copy to clipboard operation
CircleLoss_Face copied to clipboard

sparse circleloss的适用范围

Open Singapore-mor opened this issue 4 years ago • 8 comments

想问下这个代码可以用于二分类任务中吗

Singapore-mor avatar Jul 13 '20 06:07 Singapore-mor

二分类的场景也可以使用,但是没有pair的效果好。另外二分类使用需要谨慎(泛化性能)。

xialuxi avatar Jul 13 '20 08:07 xialuxi

二分类的场景也可以使用,但是没有pair的效果好。另外二分类使用需要谨慎(泛化性能)。

谢谢!我理论上感觉不太适合用于二分类,但是还是想试一下,我看其他版本的circleloss的example都是给的pairwise,不太清楚如果我要用于二分类的话,feature和label应该是什么形式的,不知道方不方便加一下qq:2761520483咨询一下?打扰了

Singapore-mor avatar Jul 13 '20 08:07 Singapore-mor

feature直接使用网络fc层提取的特征(或者其它,例如:batch_size*128),label就是分类的标签,无需其它转换。

xialuxi avatar Jul 14 '20 05:07 xialuxi

@xialuxi 你好,我想请问下该loss是否适合用于行人的ReID中?因为我发现,目前训练的loss值比较大。或者说需要有什么设置呢? 由于设备问题 目前Batch=12,lr=0.0001,numwork=8。

JoJoliking avatar Jul 15 '20 02:07 JoJoliking

能否给出训练的日志?

xialuxi avatar Jul 15 '20 02:07 xialuxi

@xialuxi 你好可能有点长,因为我没有进行函数描绘,主要在ID Loss这块。并且我使用了你的默认参数设置。Cirloss 没有做任何变动。 mot/default |################################| train: [1][4458/4459]|Tot: 1:27:28 |ETA: 0:00:02 |loss 13.1335 |hm_loss 0.9459 |wh_loss 1.7594 |off_loss 0.2210 |id_loss 7.2181 |Data 0.002s(0.003s) |Net 1.178s mot/default |################################| train: [2][4458/4459]|Tot: 1:27:51 |ETA: 0:00:02 |loss 12.8852 |hm_loss 0.9227 |wh_loss 1.7187 |off_loss 0.2199 |id_loss 7.1074 |Data 0.002s(0.003s) |Net 1.182s mot/default |################################| train: [3][4458/4459]|Tot: 1:27:30 |ETA: 0:00:02 |loss 12.6517 |hm_loss 0.8947 |wh_loss 1.6885 |off_loss 0.2191 |id_loss 7.0148 |Data 0.002s(0.003s) |Net 1.177s mot/default |################################| train: [4][4458/4459]|Tot: 1:26:48 |ETA: 0:00:02 |loss 12.5557 |hm_loss 0.8891 |wh_loss 1.6778 |off_loss 0.2186 |id_loss 6.9635 |Data 0.002s(0.003s) |Net 1.168s mot/default |################################| train: [5][4458/4459]|Tot: 1:26:41 |ETA: 0:00:02 |loss 12.4758 |hm_loss 0.8809 |wh_loss 1.6671 |off_loss 0.2189 |id_loss 6.9276 |Data 0.002s(0.003s) |Net 1.167s mot/default |################################| train: [6][4458/4459]|Tot: 1:27:12 |ETA: 0:00:02 |loss 12.3457 |hm_loss 0.8688 |wh_loss 1.6588 |off_loss 0.2182 |id_loss 6.8669 |Data 0.002s(0.003s) |Net 1.173s mot/default |################################| train: [7][4458/4459]|Tot: 1:27:40 |ETA: 0:00:02 |loss 12.3634 |hm_loss 0.8755 |wh_loss 1.6691 |off_loss 0.2184 |id_loss 6.8617 |Data 0.003s(0.003s) |Net 1.180s mot/default |################################| train: [8][4458/4459]|Tot: 1:27:46 |ETA: 0:00:02 |loss 12.1811 |hm_loss 0.8510 |wh_loss 1.6333 |off_loss 0.2179 |id_loss 6.7977 |Data 0.002s(0.003s) |Net 1.181s mot/default |################################| train: [9][4458/4459]|Tot: 1:27:26 |ETA: 0:00:02 |loss 12.0027 |hm_loss 0.8232 |wh_loss 1.5909 |off_loss 0.2168 |id_loss 6.7465 |Data 0.002s(0.003s) |Net 1.177s mot/default |################################| train: [10][4458/4459]|Tot: 1:27:09 |ETA: 0:00:02 |loss 12.0017 |hm_loss 0.8254 |wh_loss 1.5973 |off_loss 0.2165 |id_loss 6.7402 |Data 0.002s(0.003s) |Net 1.173s mot/default |################################| train: [11][4458/4459]|Tot: 1:26:59 |ETA: 0:00:02 |loss 11.9265 |hm_loss 0.8162 |wh_loss 1.5819 |off_loss 0.2161 |id_loss 6.7124 |Data 0.002s(0.003s) |Net 1.171s mot/default |################################| train: [12][4458/4459]|Tot: 1:27:22 |ETA: 0:00:02 |loss 11.8204 |hm_loss 0.7983 |wh_loss 1.5628 |off_loss 0.2155 |id_loss 6.6835 |Data 0.002s(0.003s) |Net 1.176s mot/default |################################| train: [13][4458/4459]|Tot: 1:27:18 |ETA: 0:00:02 |loss 11.8251 |hm_loss 0.8012 |wh_loss 1.5641 |off_loss 0.2153 |id_loss 6.6804 |Data 0.002s(0.003s) |Net 1.175s mot/default |################################| train: [14][4458/4459]|Tot: 1:27:33 |ETA: 0:00:02 |loss 11.7543 |hm_loss 0.7946 |wh_loss 1.5523 |off_loss 0.2155 |id_loss 6.6479 |Data 0.002s(0.003s) |Net 1.178s mot/default |################################| train: [15][4458/4459]|Tot: 1:27:34 |ETA: 0:00:02 |loss 11.7216 |hm_loss 0.7918 |wh_loss 1.5480 |off_loss 0.2154 |id_loss 6.6325 |Data 0.002s(0.003s) |Net 1.178s mot/default |################################| train: [16][4458/4459]|Tot: 1:27:39 |ETA: 0:00:02 |loss 11.6520 |hm_loss 0.7816 |wh_loss 1.5382 |off_loss 0.2146 |id_loss 6.6105 |Data 0.002s(0.003s) |Net 1.179s mot/default |################################| train: [17][4458/4459]|Tot: 1:27:16 |ETA: 0:00:02 |loss 11.5981 |hm_loss 0.7683 |wh_loss 1.5252 |off_loss 0.2146 |id_loss 6.6050 |Data 0.002s(0.003s) |Net 1.174s mot/default |################################| train: [18][4458/4459]|Tot: 1:26:48 |ETA: 0:00:02 |loss 11.5128 |hm_loss 0.7621 |wh_loss 1.5155 |off_loss 0.2136 |id_loss 6.5636 |Data 0.002s(0.003s) |Net 1.168s mot/default |################################| train: [19][4458/4459]|Tot: 1:27:06 |ETA: 0:00:02 |loss 11.4561 |hm_loss 0.7517 |wh_loss 1.5000 |off_loss 0.2135 |id_loss 6.5507 |Data 0.002s(0.003s) |Net 1.172s mot/default |################################| train: [20][4458/4459]|Tot: 1:27:38 |ETA: 0:00:02 |loss 11.4093 |hm_loss 0.7424 |wh_loss 1.4876 |off_loss 0.2132 |id_loss 6.5420 |Data 0.002s(0.003s) |Net 1.179s mot/default |################################| train: [21][4458/4459]|Tot: 1:28:03 |ETA: 0:00:02 |loss 11.4014 |hm_loss 0.7443 |wh_loss 1.4930 |off_loss 0.2130 |id_loss 6.5315 |Data 0.002s(0.003s) |Net 1.185s mot/default |################################| train: [22][4458/4459]|Tot: 1:28:02 |ETA: 0:00:02 |loss 11.3336 |hm_loss 0.7313 |wh_loss 1.4710 |off_loss 0.2124 |id_loss 6.5193 |Data 0.002s(0.003s) |Net 1.185s mot/default |################################| train: [23][4458/4459]|Tot: 1:27:52 |ETA: 0:00:02 |loss 11.3311 |hm_loss 0.7330 |wh_loss 1.4737 |off_loss 0.2123 |id_loss 6.5134 |Data 0.002s(0.003s) |Net 1.182s mot/default |################################| train: [24][4458/4459]|Tot: 1:27:37 |ETA: 0:00:02 |loss 11.2566 |hm_loss 0.7197 |wh_loss 1.4474 |off_loss 0.2113 |id_loss 6.4990 |Data 0.002s(0.003s) |Net 1.179s mot/default |################################| train: [25][4458/4459]|Tot: 1:27:32 |ETA: 0:00:02 |loss 11.2015 |hm_loss 0.7081 |wh_loss 1.4437 |off_loss 0.2115 |id_loss 6.4865 |Data 0.002s(0.003s) |Net 1.178s Drop LR to 1e-05 mot/default |################################| train: [26][4458/4459]|Tot: 1:27:46 |ETA: 0:00:02 |loss 11.0474 |hm_loss 0.6828 |wh_loss 1.4002 |off_loss 0.2102 |id_loss 6.4477 |Data 0.002s(0.003s) |Net 1.181s mot/default |################################| train: [27][4458/4459]|Tot: 1:27:28 |ETA: 0:00:02 |loss 10.9727 |hm_loss 0.6733 |wh_loss 1.3883 |off_loss 0.2094 |id_loss 6.4211 |Data 0.003s(0.003s) |Net 1.177s mot/default |################################| train: [28][4458/4459]|Tot: 1:27:16 |ETA: 0:00:02 |loss 10.9489 |hm_loss 0.6691 |wh_loss 1.3808 |off_loss 0.2091 |id_loss 6.4159 |Data 0.002s(0.003s) |Net 1.174s mot/default |################################| train: [29][4458/4459]|Tot: 1:27:48 |ETA: 0:00:02 |loss 10.9353 |hm_loss 0.6625 |wh_loss 1.3716 |off_loss 0.2089 |id_loss 6.4236 |Data 0.002s(0.003s) |Net 1.181s mot/default |################################| train: [30][4458/4459]|Tot: 1:27:53 |ETA: 0:00:02 |loss 10.9275 |hm_loss 0.6614 |wh_loss 1.3682 |off_loss 0.2087 |id_loss 6.4218 |Data 0.002s(0.003s) |Net 1.183s

JoJoliking avatar Jul 15 '20 03:07 JoJoliking

你这是使用centertrack的框架训练的吧(华为的那篇跟踪论文),训练时间不长id_loss 6.4218还能接受,不过相对其它的loss比较大(数量级不同),再多训练训练,如果还是这样,给一个合适权重再试试。

xialuxi avatar Jul 15 '20 03:07 xialuxi

是的,同时由于我在跑自己的backbone,hmloss也是比较大。因为服务器使用原因只能30轮为一次训练这样跑。多了承受不了

JoJoliking avatar Jul 15 '20 03:07 JoJoliking