Ad-papers
Ad-papers copied to clipboard
Papers on Computational Advertising
计算广告论文、学习资料、业界分享
动态更新工作中实现或者阅读过的计算广告相关论文、学习资料和业界分享,作为自己工作的总结,也希望能为计算广告相关行业的同学带来便利。 所有资料均来自于互联网,如有侵权,请联系王喆。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下:
- Email: [email protected]
- LinkedIn: 王喆的LinkedIn
- 知乎私信: 王喆的知乎
会不断加入一些重要的计算广告相关论文和资料,并去掉一些过时的或者跟计算广告不太相关的论文
-
New!
[Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
2018 KDD best paper, Airbnb基于embeddding构建的实时搜索推荐系统 -
New!
[DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
阿里提出的深度兴趣网络(Deep Interest Network)最新改进DIEN
其他相关资源
-
张伟楠的RTB Papers列表
-
基于Spark MLlib的CTR预估模型(LR, FM, RF, GBDT, NN, PNN)
-
推荐系统相关论文和资源列表
- Honglei Zhang的推荐系统论文列表
目录
Optimization Method
Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给出直观解释的文章
-
Google Vizier A Service for Black-Box Optimization
-
在线最优化求解(Online Optimization)-冯扬
-
Hogwild A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
-
Parallelized Stochastic Gradient Descent
-
A Survey on Algorithms of the Regularized Convex Optimization Problem
-
Follow-the-Regularized-Leader and Mirror Descent- Equivalence Theorems and L1 Regularization
-
A Review of Bayesian Optimization
-
Taking the Human Out of the Loop- A Review of Bayesian Optimization
-
非线性规划
Topic Model
话题模型相关文章,PLSA,LDA,进行广告Context特征提取,创意优化经常会用到Topic Model
-
概率语言模型及其变形系列
-
Parameter estimation for text analysis
-
LDA数学八卦
-
Distributed Representations of Words and Phrases and their Compositionality
-
Dirichlet Distribution, Dirichlet Process and Dirichlet Process Mixture(PPT)
-
理解共轭先验
Google Three Papers
Google三大篇,HDFS,MapReduce,BigTable,奠定大数据基础架构的三篇文章,任何从事大数据行业的工程师都应该了解
-
MapReduce Simplified Data Processing on Large Clusters
-
The Google File System
-
Bigtable A Distributed Storage System for Structured Data
Factorization Machines
FM因子分解机模型的相关paper,在计算广告领域非常实用的模型
-
FM PPT by CMU
-
Factorization Machines Rendle2010
-
libfm-1.42.manual
-
Scaling Factorization Machines to Relational Data
-
fastFM- A Library for Factorization Machines
Embedding
-
[Negative Sampling] Word2vec Explained Negative-Sampling Word-Embedding Method (2014)
-
[SDNE] Structural Deep Network Embedding (THU 2016)
-
[Item2Vec] Item2Vec-Neural Item Embedding for Collaborative Filtering (Microsoft 2016)
-
[Word2Vec] Distributed Representations of Words and Phrases and their Compositionality (Google 2013)
-
[Word2Vec] Word2vec Parameter Learning Explained (UMich 2016)
-
[Node2vec] Node2vec - Scalable Feature Learning for Networks (Stanford 2016)
-
[Graph Embedding] DeepWalk- Online Learning of Social Representations (SBU 2014)
-
[Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
-
[Alibaba Embedding] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba (Alibaba 2018)
-
[Word2Vec] Efficient Estimation of Word Representations in Vector Space (Google 2013)
-
[LINE] LINE - Large-scale Information Network Embedding (MSRA 2015)
Budget Control
广告系统中Pacing,预算控制,以及怎么把预算控制与其他模块相结合的问题
-
Budget Pacing for Targeted Online Advertisements at LinkedIn
-
广告系统中的智能预算控制策略
-
Predicting Traffic of Online Advertising in Real-time Bidding Systems from Perspective of Demand-Side Platforms
-
Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising
-
PID控制经典培训教程
-
PID控制原理与控制算法
-
Smart Pacing for Effective Online Ad Campaign Optimization
Tree Model
树模型和基于树模型的boosting模型,树模型的效果在大部分问题上非常好,在CTR,CVR预估及特征工程方面的应用非常广
-
Introduction to Boosted Trees
-
Classification and Regression Trees
-
Greedy Function Approximation A Gradient Boosting Machine
-
Classification and Regression Trees
Guaranteed Contracts Ads
事实上,现在很多大的媒体主仍是合约广告系统,合约广告系统的在线分配,Yield Optimization,以及定价问题都是非常重要且有挑战性的问题
-
A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time Bidding in Display Advertising
-
Pricing Guaranteed Contracts in Online Display Advertising
-
Risk-Aware Dynamic Reserve Prices of Programmatic Guarantee in Display Advertising
-
Pricing Guidance in Ad Sale Negotiations The PrintAds Example
-
Risk-Aware Revenue Maximization in Display Advertising
Classic CTR Prediction
-
[LR] Predicting Clicks - Estimating the Click-Through Rate for New Ads (Microsoft 2007)
-
[FFM] Field-aware Factorization Machines for CTR Prediction (Criteo 2016)
-
[GBDT+LR] Practical Lessons from Predicting Clicks on Ads at Facebook (Facebook 2014)
-
[PS-PLM] Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction (Alibaba 2017)
-
[FTRL] Ad Click Prediction a View from the Trenches (Google 2013)
-
[FM] Fast Context-aware Recommendations with Factorization Machines (UKON 2011)
Bidding Strategy
计算广告中广告定价,RTB过程中广告出价策略的相关问题
-
Research Frontier of Real-Time Bidding based Display Advertising
-
Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising
-
Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising
-
Real-Time Bidding by Reinforcement Learning in Display Advertising
-
Combining Powers of Two Predictors in Optimizing Real-Time Bidding Strategy under Constrained Budget
-
Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising
-
Optimized Cost per Click in Taobao Display Advertising
-
Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation
-
Deep Reinforcement Learning for Sponsored Search Real-time Bidding
Computational Advertising Architect
广告系统的架构问题
-
[TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems
-
大数据下的广告排序技术及实践
-
美团机器学习 吃喝玩乐中的算法问题
-
[Parameter Server]Scaling Distributed Machine Learning with the Parameter Server
-
Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting
-
A Comparison of Distributed Machine Learning Platforms
-
Efficient Query Evaluation using a Two-Level Retrieval Process
-
[TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning
-
[Parameter Server]Parameter Server for Distributed Machine Learning
-
Overlapping Experiment Infrastructure More, Better, Faster Experimentation
Machine Learning Tutorial
机器学习方面一些非常实用的学习资料
-
各种回归的概念学习
-
机器学习总图
-
Efficient Estimation of Word Representations in Vector Space
-
Rules of Machine Learning- Best Practices for ML Engineering
-
An introduction to ROC analysis
-
Deep Learning Tutorial
-
广义线性模型
-
贝叶斯统计学(PPT)
-
关联规则基本算法及其应用
Transfer Learning
迁移学习相关文章,计算广告中经常遇到新广告冷启动的问题,利用迁移学习能较好解决该问题
-
[Multi-Task]An Overview of Multi-Task Learning in Deep Neural Networks
-
Scalable Hands-Free Transfer Learning for Online Advertising
-
A Survey on Transfer Learning
Deep Learning CTR Prediction
-
[DCN] Deep & Cross Network for Ad Click Predictions (Stanford 2017)
-
[Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features (Microsoft 2016)
-
[PNN] Product-based Neural Networks for User Response Prediction (SJTU 2016)
-
[DIN] Deep Interest Network for Click-Through Rate Prediction (Alibaba 2018)
-
[ESMM] Entire Space Multi-Task Model - An Effective Approach for Estimating Post-Click Conversion Rate (Alibaba 2018)
-
[Wide & Deep] Wide & Deep Learning for Recommender Systems (Google 2016)
-
[xDeepFM] xDeepFM - Combining Explicit and Implicit Feature Interactions for Recommender Systems (USTC 2018)
-
[Image CTR] Image Matters - Visually modeling user behaviors using Advanced Model Server (Alibaba 2018)
-
[AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks (ZJU 2017)
-
[DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
-
[DSSM] Learning Deep Structured Semantic Models for Web Search using Clickthrough Data (UIUC 2013)
-
[FNN] Deep Learning over Multi-field Categorical Data (UCL 2016)
-
[DeepFM] A Factorization-Machine based Neural Network for CTR Prediction (HIT-Huawei 2017)
-
[NFM] Neural Factorization Machines for Sparse Predictive Analytics (NUS 2017)
Exploration and Exploitation
探索和利用,计算广告中非常经典,也是容易被大家忽视的问题,其实所有的广告系统都面临如何解决新广告主冷启动,以及在效果不好的情况下如何探索新的优质流量的问题,希望该目录下的几篇文章能够帮助到你
-
An Empirical Evaluation of Thompson Sampling
-
Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments
-
广告系统中的探索与利用算法
-
Finite-time Analysis of the Multiarmed Bandit Problem
-
A Fast and Simple Algorithm for Contextual Bandits
-
Customer Acquisition via Display Advertising Using MultiArmed Bandit Experiments
-
Mastering the game of Go with deep neural networks and tree search
-
Exploring compact reinforcement-learning representations with linear regression
-
Incentivizting Exploration in Reinforcement Learning with Deep Predictive Models
-
Bandit Algorithms Continued- UCB1
-
A Contextual-Bandit Approach to Personalized News Article Recommendation(LinUCB)
-
Exploitation and Exploration in a Performance based Contextual Advertising System
-
Bandit based Monte-Carlo Planning
-
Random Forest for the Contextual Bandit Problem
-
Unifying Count-Based Exploration and Intrinsic Motivation
-
Analysis of Thompson Sampling for the Multi-armed Bandit Problem
-
Thompson Sampling PPT
-
Hierarchical Deep Reinforcement Learning- Integrating Temporal Abstraction and Intrinsic Motivation
-
Exploration and Exploitation Problem by Wang Zhe
-
Exploration exploitation in Go UCT for Monte-Carlo Go
-
对抗搜索、多臂老虎机问题、UCB算法
-
Using Confidence Bounds for Exploitation-Exploration Trade-offs
Allocation
广告流量的分配问题