deepid2_caffe
deepid2_caffe copied to clipboard
Training MS-Celeb-1M
Hi, are you training ms-celeb-1m dataset now? How long did you extract image from ms-celeb-1m.tsv file?
I use the SSD disk; Extracting image from ms-celeb-1m.tsv may take a long while , about several hours. I only extract 20000 persons' images for training. @xhzcyc
How about your training result? @wuqianliang
What's the size of your lmdb file that generated from 20000 person's image?
deepid1 , test softmax accuracy 70% deepid2 , test softmax accuracy 37%
DeepID1_train_lmdb 19G DeepID1_test_lmdb 4.5G
This week , I will try multipatch preprocess on train dataset. @xhzcyc
Why are your test accuracy so low? I have trained 10000 people subset and get a good result!
Could you share the sovler txt for deepid1 and deepid2 ? @xhzcyc my emailbox : [email protected]
Do you have a wechat ? @xhzcyc
My wechat is 15715164075
用的deepid2跑了四万次 准确率63是不是有点低了 I0305 19:09:06.048393 22020 solver.cpp:337] Iteration 40000, Testing net (#0) I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #0: accuracy1 = 0.634328 I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #1: sim_loss = 0.0132883 (* 0.3 = 0.00398649 loss) I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #2: softmax_loss = 2.3179 (* 0.7 = 1.62253 loss)
用的deepid2跑了四万次 准确率63是不是有点低了 I0305 19:09:06.048393 22020 solver.cpp:337] Iteration 40000, Testing net (#0) I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #0: accuracy1 = 0.634328 I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #1: sim_loss = 0.0132883 (* 0.3 = 0.00398649 loss) I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #2: softmax_loss = 2.3179 (* 0.7 = 1.62253 loss)
用的是lfw-aligned的train.txt 一共三千左右样本
用的deepid2跑了四万次 准确率63是不是有点低了 I0305 19:09:06.048393 22020 solver.cpp:337] Iteration 40000, Testing net (#0) I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #0: accuracy1 = 0.634328 I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #1: sim_loss = 0.0132883 (* 0.3 = 0.00398649 loss) I0305 19:09:47.081173 22020 solver.cpp:404] Test net output #2: softmax_loss = 2.3179 (* 0.7 = 1.62253 loss)
用的是lfw-aligned的train.txt 一共三千左右样本
建议你用sphereface,效果比较好。 LFW数据集太小,效果相对会比较差一些。