rotational-data-augmentation-yolo
rotational-data-augmentation-yolo copied to clipboard
rotational data augmentation for yolo
Rotational Data Augmentation for YOLO
Requirement
numpy
opencv-python
Before and after
Before: the block at left-top corner is bounded by a white box.

After: Image is rotated anticlockwise by 30 degree and the block is still bounded by the white box.

Directory structure
.
├── check_label.py
├── rotation.py
├── data_original
│ ├── images
│ │ └── test00.png
│ └── labels
│ └── test00.txt
└── data_rotational
├── images
│ ├── test00_000.jpg
│ ├── test00_030.jpg
│ └── ...
└── labels
├── test00_000.txt
├── test00_030.txt
└── ...
data_original is directory with your images and labels. After running rotation.py, rotated images and labels will be stored in data_rotational.
Generate augmented data
python rotation.py DATASET_INPUT
DATASET_INPUT is data_original in this example. The default output destination directory is data_rotational.
You can use python rotation.py -h to get more information.
Visualize generated images and labels
python check_label.py DATASET_INPUT
DATASET_INPUT is data_rotational in this example.
You can use python check_label.py -h to get more information.