Background and Layout Evaluation
Am I doing something wrong? I am unable to generate a harmonized layout
Background Training
export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="./../data/background/train" export OUTPUT_DIR="./../logs/background"
accelerate launch train_background.py
--pretrained_model_name_or_path=$MODEL_NAME
--train_text_encoder
--instance_data_dir=$INSTANCE_DIR
--output_dir=$OUTPUT_DIR
--resolution=512
--train_batch_size=1
--gradient_checkpointing
--learning_rate=1e-5
--lr_scheduler="constant"
--lr_warmup_steps=500
--num_train_epochs=50
--resume_from_checkpoint=latest
--with_spatial_loss
--checkpointing_steps=10000
Background Evaluation Results
- FID: 25.15
- CLIP: 17.36
- Saliency Ratio: 0.1756
Layout Training
python main.py --dataset webui --exp layout
--data_dir ../data
--epoch 100 --lr 1.5e-5 --lr_decay
--encode_backbone swin --encode_embd 1024
--finetune_vb --pretrain_vb --debug
Layout Evaluation Results
- Occlusion: 10.86
- Alignment: 0.28
- Overlap: 10.19
Also in the following command, I can not see the usage of "generator_path" param
python pipeline.py
--prompt "Rose Valentines' Day"
--mode "background"
--encoder_path /path/to/encoder
--decoder_path /path/to/decoder
--generator_path logs/background-ours
For the layout generation training, remove the --debug option to use the training set, otherwise only valset is used for training.
Thanks for the response. Let me try
Evaluation Script
EXP=swin
DATASET=webui
COMMAND=category_generate
python main.py --encode_backbone swin --encode_embd 1024
--dataset $DATASET --exp $EXP --evaluate
--decoder_path ../logs/$DATASET/$EXP/checkpoints/decoder.pth
--encoder_path ../logs/$DATASET/$EXP/checkpoints/encoder.pth
--eval_command $COMMAND
--calculate_harmony
--save_pkl
python eval.py webui logs/$DATASET/$EXP/generated_layout_$COMMAND.pth
Training Script
python main.py --dataset webui --exp layout
--data_dir ../data
--epoch 100 --lr 1.5e-5 --lr_decay
--encode_backbone swin --encode_embd 1024
--finetune_vb --pretrain_vb
- Could you please also fix the the --exp folder, as the name is different in both the training and evaluation scripts?
- What's the difference between harmony and coverage?
- ["category_generate", "real_image", "reconstruction"]—what's's the difference between them?
- Where can I find the presentation generation script.
Thank you for your assistance with my questions. I appreciate your support and look forward to your response.
Training Script
python main.py --dataset webui --exp layout
--data_dir ../data
--epoch 100 --lr 1.5e-5 --lr_decay
--encode_backbone swin --encode_embd 1024
--finetune_vb --pretrain_vb
Evaluation Command
EXP=layout
DATASET=webui
COMMAND=category_generate
python main.py --encode_backbone swin --encode_embd 1024
--dataset $DATASET --exp $EXP --evaluate
--decoder_path /logs/$DATASET/$EXP/checkpoints/decoder_99.pth
--encoder_path /logs/$DATASET/$EXP/checkpoints/encoder_99.pth
--eval_command $COMMAND
--calculate_harmony
--save_pkl
--save_image
python eval.py webui /logs/$DATASET/$EXP/generated_layout_$COMMAND.pth
Evaluation Results
using device: cuda:0 load iou data train <dataset.WebUI object at 0x7f2806174c40> load iou data train dataset vocab_size: 231 train dataset max_length: 42 encoder status: name-swin, grad-True, pretrain-False /lib/python3.8/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /opt/conda/conda-bld/pytorch_1695392036766/work/aten/src/ATen/native/TensorShape.cpp:3526.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] testing... dataset length: 393 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 393/393 [01:36<00:00, 4.08it/s] harmony is: 0.17446137576242893 Dataset: webui Alignment: 0.22 Overlap: 17.67
Still the results are not satisfactory, am I doing something wrong?