pytorch-segmentation-detection
pytorch-segmentation-detection copied to clipboard
Unable to run resnet_34_8s_demo.ipynb
TypeError: torch.FloatTensor constructor received an invalid combination of arguments - got (int, int, numpy.int64, numpy.int64), but expected one of:
* no arguments
* (int ...)
didn't match because some of the arguments have invalid types: (int, int, numpy.int64, numpy.int64)
* (torch.FloatTensor viewed_tensor)
* (torch.Size size)
* (torch.FloatStorage data)
* (Sequence data)
Which version of pytorch is to be used?
@sharanry Hi,
It should work with the latest available version,
Could you, please, give me the line where exception occurred ?
TypeError Traceback (most recent call last)
in () ----> 1 fcn = resnet_dilated.Resnet34_8s(num_classes=21) 2 fcn.load_state_dict(torch.load('resnet_34_8s_66.pth')) 3 fcn.cuda() 4 fcn.eval() related lines:
/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in init(self, inplanes, planes, stride, downsample, dilation) ---> 45 self.conv1 = conv3x3(inplanes, planes, stride, dilation=dilation) 46 self.bn1 = nn.BatchNorm2d(planes)
/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in conv3x3(in_planes, out_planes, stride, dilation) 36 return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, ---> 37 padding=full_padding, dilation=dilation, bias=False)
/usr/local/lib/python3.5/dist-packages/torch/nn/modules/conv.py in init(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias) 32 self.weight = Parameter(torch.Tensor( ---> 33 out_channels, in_channels // groups, *kernel_size)) 34 if bias:
TypeError: torch.FloatTensor constructor received an invalid combination of arguments - got (int, int, numpy.int64, numpy.int64), but expected one of: ...
Probably the same error.
Probably the same error :
fcn = resnet_dilated.Resnet18_8s(num_classes=2)
throwing me error like this :
TypeError Traceback (most recent call last)
<ipython-input-3-61af6330ec33> in <module>()
----> 1 fcn = resnet_dilated.Resnet18_8s(num_classes=2)
/home/xxxx/pytorch-segmentation-detection/pytorch_segmentation_detection/models/resnet_dilated.py in __init__(self, num_classes)
54 pretrained=True,
55 output_stride=8,
---> 56 remove_avg_pool_layer=True)
57
58 # Randomly initialize the 1x1 Conv scoring layer
/home/xxxx/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in resnet18(pretrained, **kwargs)
224 pretrained (bool): If True, returns a model pre-trained on ImageNet
225 """
--> 226 model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
227 if pretrained:
228 model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
/home/xxxx/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in __init__(self, block, layers, num_classes, fully_conv, remove_avg_pool_layer, output_stride)
141 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
142
--> 143 self.layer1 = self._make_layer(block, 64, layers[0])
144 self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
145 self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
/home/xxxx/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in _make_layer(self, block, planes, blocks, stride, dilation)
189
190 layers = []
--> 191 layers.append(block(self.inplanes, planes, stride, downsample, dilation=self.current_dilation))
192 self.inplanes = planes * block.expansion
193 for i in range(1, blocks):
/home/xxxx/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in __init__(self, inplanes, planes, stride, downsample, dilation)
43 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
44 super(BasicBlock, self).__init__()
---> 45 self.conv1 = conv3x3(inplanes, planes, stride, dilation=dilation)
46 self.bn1 = nn.BatchNorm2d(planes)
47 self.relu = nn.ReLU(inplace=True)
/home/xxxx/pytorch-segmentation-detection/vision/torchvision/models/resnet.py in conv3x3(in_planes, out_planes, stride, dilation)
35
36 return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
---> 37 padding=full_padding, dilation=dilation, bias=False)
38
39
~/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/conv.py in __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
276 super(Conv2d, self).__init__(
277 in_channels, out_channels, kernel_size, stride, padding, dilation,
--> 278 False, _pair(0), groups, bias)
279
280 def forward(self, input):
~/anaconda3/envs/py36/lib/python3.6/site-packages/torch/nn/modules/conv.py in __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias)
31 else:
32 self.weight = Parameter(torch.Tensor(
---> 33 out_channels, in_channels // groups, *kernel_size))
34 if bias:
35 self.bias = Parameter(torch.Tensor(out_channels))
TypeError: torch.FloatTensor constructor received an invalid combination of arguments - got (int, int, numpy.int64, numpy.int64), but expected one of:
* no arguments
* (int ...)
didn't match because some of the arguments have invalid types: (int, int, numpy.int64, numpy.int64)
* (torch.FloatTensor viewed_tensor)
* (torch.Size size)
* (torch.FloatStorage data)
* (Sequence data)
@coolcoder001 @superoil1983 @sharanry -- that's a bug that appeared after the new version of pytorch came out. Will resolve it soon. Thank you for reporting guys :)
@coolcoder001 @superoil1983 @sharanry
I have just checked the file resnet_34_8s_benchmark
with pytorch version of 0.3.1
and python 2
installed in anaconda 2 and it seems to work fine.
Could you please provide the python version/pytorch version and python version that you guys are using when experiencing this problem?
Thank you.
I have also checked it on the latest unstable version of pytorch and python2 -- it works.
My hypothesis is that this problem is related to python 3 which we don't support yet. Should work on python 2 -- let me know if you have any further problems.
@warmspringwinds Could you please put in the requirements.txt
file as well?
Will clear out a lot of confusions.
pip freeze > requirements.txt
P.S. In my case, the errors are regarding unknown arguments for ResNet initialization. Tried on multiple cloud / GPU setups with same output. Maybe there are unchecked files (there could be cached files in your setups. On a clean repo pull, these errors might occur for you as well) [python2.7, pytorch-0.3.1]:
TypeErrorTraceback (most recent call last)
<ipython-input-1-a4cbdc8e5706> in <module>()
36
37 print(torch.__version__)
---> 38 fcn = resnet_dilated.Resnet34_8s(num_classes=21)
39 fcn.load_state_dict(torch.load('resnet_34_8s_68.pth'))
40 #fcn.load_state_dict(torch.load('resnet34-333f7ec4.pth'))
/models/pytorch-segmentation-detection/pytorch_segmentation_detection/models/resnet_dilated.py in __init__(self, num_classes)
290 # Load the pretrained weights, remove avg pool
291 # layer and get the output stride of 8
--> 292 resnet34_8s = models.resnet34(fully_conv=True, pretrained=True, output_stride=8, remove_avg_pool_layer=True)
293 #resnet34_8s = models.resnet34(pretrained=True)
294
/usr/local/lib/python2.7/dist-packages/torchvision/models/resnet.pyc in resnet34(pretrained, **kwargs)
172 pretrained (bool): If True, returns a model pre-trained on ImageNet
173 """
--> 174 model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
175 if pretrained:
176 model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
TypeError: __init__() got an unexpected keyword argument 'fully_conv'
Also, if you could also put in the resnet_34_8_66.pth
, it will be helpful to execute the code without changes in resnet_34_8s_demo.ipynb
Many thanks!
The way I got it to work in Python 3 was to change:
--- a/pytorch_segmentation_detection/models/resnet_dilated.py +++ b/pytorch_segmentation_detection/models/resnet_dilated.py @@ -1,6 +1,9 @@ import numpy as np import torch.nn as nn -import torchvision.models as models +import sys +#sys.path.insert(0, '/home/vakko/Downloads/disso/pytorch-segmentation-detection/vision/') +import vision.torchvision.models as models +print(models.__file__)
aaand to import torchvision in the same way in the notebook; in my case - multiclass_resnet_18_8s_train:
- "import torchvision\n",
- "import vision.torchvision as torchvision\n"