Pytorch-Basic-GANs
Pytorch-Basic-GANs copied to clipboard
Simple Pytorch implementations of most used Generative Adversarial Network (GAN) varieties.
GANs
Simple Pytorch implementations of most used Generative Adversarial Network (GAN) varieties.
GPU or CPU
Support both GPU and CPU.
Dependencies
Table of Contents
- Vanilla GAN (GAN)
- Conditonal GAN (cGAN)
- Improved Conditonal GAN (Improved cGAN)
- Deep Convolutional GAN (DCGAN)
- Wasserstein GAN (WGAN)
- Improved Training of Wasserstein GAN (WGAN-GP)
Experiment Results
Vanilla GAN (GAN)
| epoch 0 | epoch 10 | epoch 20 | epoch 30 | epoch 40 |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| epoch 50 | epoch 100 | epoch 150 | epoch 199 | - |
![]() |
![]() |
![]() |
![]() |
- |
Conditional GAN (cGAN)
| epoch 0 | epoch 10 | epoch 20 | epoch 30 | epoch 40 |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| epoch 50 | epoch 100 | epoch 150 | epoch 199 | - |
![]() |
![]() |
![]() |
![]() |
- |
Improved Conditional GAN (Improved cGAN)
| epoch 0 | epoch 10 | epoch 20 | epoch 30 | epoch 40 |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| epoch 50 | epoch 100 | epoch 150 | epoch 199 | - |
![]() |
![]() |
![]() |
![]() |
- |
Deep Convolutional GAN (DCGAN)
| epoch 0 | epoch 10 | epoch 20 | epoch 30 | epoch 40 |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| epoch 50 | epoch 60 | epoch 70 | epoch 80 | epoch 90 |
![]() |
![]() |
![]() |
![]() |
![]() |
Wasserstein GAN (WGAN)
| epoch 0 | epoch 10 | epoch 20 | epoch 30 | epoch 40 |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| epoch 50 | epoch 100 | epoch 150 | epoch 199 | - |
![]() |
![]() |
![]() |
![]() |
- |
Wasserstein GAN with Gradient Plenty (WGAN-GP)
| epoch 0 | epoch 10 | epoch 20 | epoch 30 | epoch 40 |
|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
| epoch 50 | epoch 100 | epoch 150 | epoch 199 | - |
![]() |
![]() |
![]() |
![]() |
- |
Acknowledgement
This project is going with the GAN Theory and Practice part of the Deep Learning Course: from Algorithm to Practice.
Contacts
If you have any question about the project, please feel free to contact with me.
E-mail: [email protected]






















































