Scaled-YOLOv4-tensorflow2
Scaled-YOLOv4-tensorflow2 copied to clipboard
Customzied training Error
when i trained myself datasets,it comes
+-------------------------------------------+
loading dataset...
loading dataset...
100%|█████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.16s/it]
creating index...
index created!
1e-06
0%| | 0/20 [00:00<?, ?it/s]2021-04-28 11:28:55.279041: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic librarylibcudnn.so.7
2021-04-28 11:28:57.187358: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic librarylibcublas.so.10
0%| | 0/20 [00:09<?, ?it/s]
Traceback (most recent call last):
File "train.py", line 298, in
Same here, running on colab.
Traceback (most recent call last):
File "train.py", line 309, in <module>
main(args)
File "train.py", line 215, in main
use_multiprocessing=False)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py", line 1183, in fit
tmp_logs = self.train_function(iterator)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py", line 889, in __call__
result = self._call(*args, **kwds)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py", line 950, in _call
return self._stateless_fn(*args, **kwds)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py", line 3024, in __call__
filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py", line 1961, in _call_flat
ctx, args, cancellation_manager=cancellation_manager))
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py", line 596, in call
ctx=ctx)
File "/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/execute.py", line 60, in quick_execute
inputs, attrs, num_outputs)
tensorflow.python.framework.errors_impl.InvalidArgumentError: ConcatOp : Dimensions of inputs should match: shape[0] = [8,512,13,13] vs. shape[1] = [8,512,12,12]
[[node model/concatenate_8/concat (defined at train.py:215) ]] [Op:__inference_train_function_68776]
Function call stack:
train_function
2021-06-20 08:54:23.124999: W tensorflow/core/kernels/data/generator_dataset_op.cc:107] Error occurred when finalizing GeneratorDataset iterator: Failed precondition: Python interpreter state is not initialized. The process may be terminated.
[[{{node PyFunc}}]]
Could you share your command line? what's your "model-type"? p5? what's your "--multi-scale"? It's seem that image size is not divided by 32(p5) / 64(p6) / 128(p7) .
Yes I found out that it needs to be divisible by 32 using the formula. Had this error because I was trying to copy the sizes for tiny onto P5. I have fixed it already, thanks!