embeddings
embeddings copied to clipboard
Fast, DB Backed pretrained word embeddings for natural language processing.
Embeddings
.. image:: https://readthedocs.org/projects/embeddings/badge/?version=latest :target: http://embeddings.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status .. image:: https://travis-ci.org/vzhong/embeddings.svg?branch=master :target: https://travis-ci.org/vzhong/embeddings
Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning.
Instead of loading a large file to query for embeddings, embeddings
is backed by a database and fast to load and query:
.. code-block:: python
>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300)
100 loops, best of 3: 12.7 ms per loop
>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300).emb('canada')
100 loops, best of 3: 12.9 ms per loop
>>> g = GloveEmbedding('common_crawl_840', d_emb=300)
>>> %timeit -n1 g.emb('canada')
1 loop, best of 3: 38.2 µs per loop
Installation
.. code-block:: sh
pip install embeddings # from pypi
pip install git+https://github.com/vzhong/embeddings.git # from github
Usage
Upon first use, the embeddings are first downloaded to disk in the form of a SQLite database.
This may take a long time for large embeddings such as GloVe.
Further usage of the embeddings are directly queried against the database.
Embedding databases are stored in the $EMBEDDINGS_ROOT
directory (defaults to ~/.embeddings
). Note that this location is probably undesirable if your home directory is on NFS, as it would slow down database queries significantly.
.. code-block:: python
from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbedding
g = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:
print('embedding {}'.format(w))
print(g.emb(w))
print(f.emb(w))
print(k.emb(w))
print(c.emb(w))
Docker
If you use Docker, an image prepopulated with the Common Crawl 840 GloVe embeddings and Kazuma Hashimoto's character ngram embeddings is available at vzhong/embeddings <https://hub.docker.com/r/vzhong/embeddings>
_.
To mount volumes from this container, set $EMBEDDINGS_ROOT
in your container to /opt/embeddings
.
For example:
.. code-block:: bash
docker run --volumes-from vzhong/embeddings -e EMBEDDINGS_ROOT='/opt/embeddings' myimage python train.py
Contribution
Pull requests welcome!