so-vits-svc-fork
so-vits-svc-fork copied to clipboard
Torch not compiled with CUDA enabled (on RTX 3060 6gb card with cuda 12.1 installed)
Describe the bug Torch not compiled with CUDA enabled
C:\Users\user1\Documents\Voice-Clonning>svc infer "C:\\Users\\user1\\Documents\\Voice-Clonning\\Waiting_for_Rain_30sec.wav" --speaker "tokaiteio" -c "C:\Users\user1\Documents\Voice-Clonning\AllVoices\Tokai-Teio\config.json" -m "C:\Users\user1\Documents\Voice-Clonning\AllVoices\Tokai-Teio\G_531200.pth" -d cuda
Traceback (most recent call last):
File "C:\Users\user1\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "C:\Users\user1\AppData\Local\Programs\Python\Python310\lib\runpy.py", line 86, in _run_code
exec(code, run_globals)
File "C:\Users\user1\Documents\Voice-Clonning\venv\Scripts\svc.exe\__main__.py", line 7, in <module>
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\click\core.py", line 1130, in __call__ return self.main(*args, **kwargs)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\click\core.py", line 1055, in main
rv = self.invoke(ctx)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\click\core.py", line 1657, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\click\core.py", line 1404, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\click\core.py", line 760, in invoke
return __callback(*args, **kwargs)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\so_vits_svc_fork\__main__.py", line 248, in infer
infer(
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\so_vits_svc_fork\inference\main.py", line 46, in infer
svc_model = Svc(
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\so_vits_svc_fork\inference\core.py", line 109, in __init__
self.hubert_model = utils.get_hubert_model(
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\so_vits_svc_fork\utils.py", line 154, in get_hubert_model
).to(device)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\transformers\modeling_utils.py", line 1896, in to
return super().to(*args, **kwargs)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\nn\modules\module.py", line 1145, in to
return self._apply(convert)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\nn\modules\module.py", line 797, in _apply
module._apply(fn)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\nn\modules\module.py", line 797, in _apply
module._apply(fn)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\nn\modules\module.py", line 797, in _apply
module._apply(fn)
[Previous line repeated 1 more time]
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\nn\modules\module.py", line 820, in _apply
param_applied = fn(param)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\nn\modules\module.py", line 1143, in convert
return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
File "C:\Users\user1\Documents\Voice-Clonning\venv\lib\site-packages\torch\cuda\__init__.py", line 239, in _lazy_init
raise AssertionError("Torch not compiled with CUDA enabled")
AssertionError: Torch not compiled with CUDA enabled
when i run the code on gpu by adding -d cuda this error comes and i have a RTX 3060 6gb card with cuda 12.1 installed
To Reproduce
i ran the following command
svc infer "C:\\Users\\user1\\Documents\\Voice-Clonning\\Waiting_for_Rain_30sec.wav" --speaker "tokaiteio" -c "C:\Users\user1\Documents\Voice-Clonning\AllVoices\Tokai-Teio\config.json" -m "C:\Users\user1\Documents\Voice-Clonning\AllVoices\Tokai-Teio\G_531200.pth" -d cuda
Additional context
nvidia-smi result
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 531.61 Driver Version: 531.61 CUDA Version: 12.1 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 3060 L... WDDM | 00000000:01:00.0 Off | N/A |
| N/A 51C P0 27W / N/A| 0MiB / 6144MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| No running processes found |
+---------------------------------------------------------------------------------------+
From my understanding CUDA 12.1 is not supported.
Can you try installing CUDA 11.8 and cuDNN for 11.8? (I don't know which version it was again)
Just a note, I personally run this on cuda 12.1 myself. In general, I would expect "Torch not compiled with CUDA enabled" issues to just be a bad install of torch. I would try manually installing torch from https://pytorch.org/ into your conda env. I'm not sure at the moment how reliable the pip installer is at choosing the right torch version, however, since I always manually install my torch.
Judging by this issue I don't even think installing CUDA Toolkit and cuDNN is necessary even https://github.com/voicepaw/so-vits-svc-fork/issues/499
So yeah, maybe a reinstall of pytorch could already fix it?
Hello, I'm using RTX 3060 laptop version 3.7.2 and both infer and train works correctly even nvidia-smi says CUDA 12.1.
For this case, follow the PyTorch installation instruction correctly https://pytorch.org/get-started/locally/
pip install torch torchaudio --index-url https://download.pytorch.org/whl/cu118
The additional --index-url https://download.pytorch.org/whl/cu118 is the most important.