vnlp
vnlp copied to clipboard
State-of-the-art, lightweight NLP tools for Turkish language. Developed by VNGRS.

VNLP: Turkish NLP Tools
State-of-the-art, lightweight NLP tools for Turkish language.
Developed by VNGRS.
https://vngrs.com/
Functionality:
- Sentence Splitter
- Normalizer
- Spelling/Typo correction
- Convert numbers to word form
- Deasciification
- Stopword Remover:
- Static
- Dynamic
- Stemmer: Morphological Analyzer & Disambiguator
- Named Entity Recognizer (NER)
- Dependency Parser
- Part of Speech (PoS) Tagger
- Sentiment Analyzer
- Turkish Word Embeddings
- FastText
- Word2Vec
- SentencePiece Unigram Tokenizer
- Text Summarization: In development progress...
Demo:
- Try the Demo.
Installation
pip install vngrs-nlp
Documentation:
- See the Documentation for the details about usage, classes, functions, datasets and evaluation metrics.
Metrics:

Usage Example:
Dependency Parser
from vnlp import DependencyParser
dep_parser = DependencyParser()
dep_parser.predict("Oğuz'un kırmızı bir Astra'sı vardı.")
[("Oğuz'un", 'PROPN'),
('kırmızı', 'ADJ'),
('bir', 'DET'),
("Astra'sı", 'PROPN'),
('vardı', 'VERB'),
('.', 'PUNCT')]
# Spacy's submodule Displacy can be used to visualize DependencyParser result.
import spacy
from vnlp import DependencyParser
dependency_parser = DependencyParser()
result = dependency_parser.predict("Oğuz'un kırmızı bir Astra'sı vardı.", displacy_format = True)
spacy.displacy.render(result, style="dep", manual = True)
