[Bug]: Phi-3-small-128k-instruct on 1 A100 GPUs - Assertion error: Does not support prefix-enabled attention.
Your current environment
The output of `python collect_env.py`
(myenv) aiscuser@node-0:~/vllm$ python collect_env.py
Collecting environment information...
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.0
Libc version: glibc-2.31
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1045-azure-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.86.10
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7V12 64-Core Processor
Stepping: 0
CPU MHz: 2445.440
BogoMIPS: 4890.88
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 384 MiB
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.20
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.1
[pip3] triton==3.0.0
[conda] No relevant packages
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.4@cc0eaf12b1a94bc2fd8d497f6615202699fcf7da
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 SYS SYS SYS SYS SYS NODE NODE SYS SYS 24-47 1 N/A
GPU1 NV12 X SYS SYS SYS SYS SYS NODE NODE SYS SYS 24-47 1 N/A
NIC0 SYS SYS X NODE SYS SYS SYS SYS SYS SYS SYS
NIC1 SYS SYS NODE X SYS SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS SYS SYS X SYS SYS SYS SYS NODE NODE
NIC3 SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS
NIC5 NODE NODE SYS SYS SYS SYS SYS X NODE SYS SYS
NIC6 NODE NODE SYS SYS SYS SYS SYS NODE X SYS SYS
NIC7 SYS SYS SYS SYS NODE SYS SYS SYS SYS X NODE
NIC8 SYS SYS SYS SYS NODE SYS SYS SYS SYS NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
🐛 Describe the bug
- start the vLLM server:
python -m vllm.entrypoints.openai.api_server --model 'microsoft/Phi-3-small-128k-instruct' --dtype auto --trust-remote-code - from another terminal, send a request to the server:
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d '{"model": "microsoft/Phi-3-small-128k-instruct","prompt": "Who is the president of the united states?", "max_tokens": 1000,"temperature": 0.2,"top_p": 0.95,"echo": true}' - Server crash with the assertion error below:
INFO 08-22 09:36:23 logger.py:36] Received request cmpl-7836154054e34e87a357c3c0f93d50b1-0: prompt: 'Who is the president of the united states?', params: SamplingParams(n=1, best_of=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.2, top_p=0.95, top_k=-1, min_p=0.0, seed=None, use_beam_search=False, length_penalty=1.0, early_stopping=False, stop=[], stop_token_ids=[], include_stop_str_in_output=False, ignore_eos=False, max_tokens=1000, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None), prompt_token_ids: [15546, 374, 279, 4872, 315, 279, 29292, 5415, 30], lora_request: None, prompt_adapter_request: None.
INFO 08-22 09:36:23 async_llm_engine.py:208] Added request cmpl-7836154054e34e87a357c3c0f93d50b1-0.
DEBUG 08-22 09:36:23 async_llm_engine.py:899] Waiting for new requests...
DEBUG 08-22 09:36:23 async_llm_engine.py:913] Got new requests!
ERROR 08-22 09:36:23 async_llm_engine.py:65] Engine background task failed
ERROR 08-22 09:36:23 async_llm_engine.py:65] Traceback (most recent call last):
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 55, in _log_task_completion
ERROR 08-22 09:36:23 async_llm_engine.py:65] return_value = task.result()
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 930, in run_engine_loop
ERROR 08-22 09:36:23 async_llm_engine.py:65] result = task.result()
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 873, in engine_step
ERROR 08-22 09:36:23 async_llm_engine.py:65] request_outputs = await self.engine.step_async(virtual_engine)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 337, in step_async
ERROR 08-22 09:36:23 async_llm_engine.py:65] output = await self.model_executor.execute_model_async(
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/executor/gpu_executor.py", line 178, in execute_model_async
ERROR 08-22 09:36:23 async_llm_engine.py:65] output = await make_async(self.driver_worker.execute_model
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.conda/envs/myenv/lib/python3.10/concurrent/futures/thread.py", line 58, in run
ERROR 08-22 09:36:23 async_llm_engine.py:65] result = self.fn(*self.args, **self.kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/worker/worker_base.py", line 322, in execute_model
ERROR 08-22 09:36:23 async_llm_engine.py:65] output = self.model_runner.execute_model(
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 08-22 09:36:23 async_llm_engine.py:65] return func(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/worker/model_runner.py", line 1415, in execute_model
ERROR 08-22 09:36:23 async_llm_engine.py:65] hidden_or_intermediate_states = model_executable(
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return self._call_impl(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return forward_call(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 423, in forward
ERROR 08-22 09:36:23 async_llm_engine.py:65] output_hidden_states = self.model(
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return self._call_impl(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return forward_call(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 338, in forward
ERROR 08-22 09:36:23 async_llm_engine.py:65] hidden_states = layer(
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return self._call_impl(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return forward_call(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 282, in forward
ERROR 08-22 09:36:23 async_llm_engine.py:65] hidden_states = self.self_attn(
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return self._call_impl(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return forward_call(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 244, in forward
ERROR 08-22 09:36:23 async_llm_engine.py:65] attn_output = self.attn(q, k, v, kv_cache, attn_metadata=attn_metadata)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return self._call_impl(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
ERROR 08-22 09:36:23 async_llm_engine.py:65] return forward_call(*args, **kwargs)
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/attention/layer.py", line 98, in forward
ERROR 08-22 09:36:23 async_llm_engine.py:65] return self.impl.forward(query,
ERROR 08-22 09:36:23 async_llm_engine.py:65] File "/home/aiscuser/vllm/vllm/attention/backends/blocksparse_attn.py", line 404, in forward
ERROR 08-22 09:36:23 async_llm_engine.py:65] or prefill_meta.block_tables.numel() == 0, \
ERROR 08-22 09:36:23 async_llm_engine.py:65] AssertionError: Does not support prefix-enabled attention.
Exception in callback functools.partial(<function _log_task_completion at 0x7f8b05581f30>, error_callback=<bound method AsyncLLMEngine._error_callback of <vllm.engine.async_llm_engine.AsyncLLMEngine object at 0x7f8ae5cad060>>)
handle: <Handle functools.partial(<function _log_task_completion at 0x7f8b05581f30>, error_callback=<bound method AsyncLLMEngine._error_callback of <vllm.engine.async_llm_engine.AsyncLLMEngine object at 0x7f8ae5cad060>>)>
Traceback (most recent call last):
File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 55, in _log_task_completion
return_value = task.result()
File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 930, in run_engine_loop
result = task.result()
File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 873, in engine_step
request_outputs = await self.engine.step_async(virtual_engine)
File "/home/aiscuser/vllm/vllm/engine/async_llm_engine.py", line 337, in step_async
output = await self.model_executor.execute_model_async(
File "/home/aiscuser/vllm/vllm/executor/gpu_executor.py", line 178, in execute_model_async
output = await make_async(self.driver_worker.execute_model
File "/home/aiscuser/.conda/envs/myenv/lib/python3.10/concurrent/futures/thread.py", line 58, in run
result = self.fn(*self.args, **self.kwargs)
File "/home/aiscuser/vllm/vllm/worker/worker_base.py", line 322, in execute_model
output = self.model_runner.execute_model(
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/aiscuser/vllm/vllm/worker/model_runner.py", line 1415, in execute_model
hidden_or_intermediate_states = model_executable(
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 423, in forward
output_hidden_states = self.model(
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 338, in forward
hidden_states = layer(
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 282, in forward
hidden_states = self.self_attn(
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/aiscuser/vllm/vllm/model_executor/models/phi3_small.py", line 244, in forward
attn_output = self.attn(q, k, v, kv_cache, attn_metadata=attn_metadata)
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/aiscuser/.local/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/aiscuser/vllm/vllm/attention/layer.py", line 98, in forward
return self.impl.forward(query,
File "/home/aiscuser/vllm/vllm/attention/backends/blocksparse_attn.py", line 404, in forward
or prefill_meta.block_tables.numel() == 0, \
AssertionError: Does not support prefix-enabled attention.
The vLLM version that works: v0.5.2
Looking into this bug, I found that chunked prefill is not correctly supported by the block-sparse attention module used by the Phi-3-small-128k-instruct model. And chunked prefill is turned on by default for model that supports >32k context length due to this PR [Misc] Enable chunked prefill by default for long context models (#6666) · microsoft/vllm@729171a (github.com)
A quick fix is to disable chunked prefill by setting --enable-chunked-prefill=False, I will work on a fix for chunked-prefill.
Looking into this bug, I found that chunked prefill is not correctly supported by the block-sparse attention module used by the Phi-3-small-128k-instruct model. And chunked prefill is turned on by default for model that supports >32k context length due to this PR [Misc] Enable chunked prefill by default for long context models (#6666) · microsoft/vllm@729171a (github.com)
A quick fix is to disable chunked prefill by setting
--enable-chunked-prefill=False, I will work on a fix for chunked-prefill.
but the inference speed is extremely slow...
@congcongchen123 is this issue fixed in latest vLLM release. Please suggest.
This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!
This issue has been automatically closed due to inactivity. Please feel free to reopen if you feel it is still relevant. Thank you!