vllm
vllm copied to clipboard
[Usage]: OpenAI-like API in offline inference
Your current environment
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.6
Libc version: glibc-2.35
Python version: 3.9.19 (main, May 6 2024, 19:43:03) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090
Nvidia driver version: 555.85
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 28
On-line CPU(s) list: 0-27
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i7-14700K
CPU family: 6
Model: 183
Thread(s) per core: 2
Core(s) per socket: 14
Socket(s): 1
Stepping: 1
BogoMIPS: 6835.19
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities
Virtualization: VT-x
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 672 KiB (14 instances)
L1i cache: 448 KiB (14 instances)
L2 cache: 28 MiB (14 instances)
L3 cache: 33 MiB (1 instance)
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.0.8+cu121torch2.3
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnx==1.16.1
[pip3] onnxruntime==1.18.1
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.3.0
[pip3] torchaudio==2.3.0
[pip3] torchvision==0.18.0
[pip3] transformers==4.42.3
[pip3] triton==2.3.0
[conda] flashinfer 0.0.8+cu121torch2.3 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] sentence-transformers 3.0.1 pypi_0 pypi
[conda] torch 2.3.0 pypi_0 pypi
[conda] torchaudio 2.3.0 pypi_0 pypi
[conda] torchvision 0.18.0 pypi_0 pypi
[conda] transformers 4.42.3 pypi_0 pypi
[conda] triton 2.3.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
How would you like to use vllm
I want to run inference of different llm including chatglm3-6b, chatglm4-9b-chat, chinese-alpaca-2-13b, Qwen1.5-14B-Chat using vllm.LLM . I don't know can we just add system prompt in prompt just like openai API rather than using python -m vllm.entrypoints.openai.api_server --model facebook/opt-125m
. I want to use the prompt just in code rather than using api, it may like this:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
messages2 = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
prompts = [messages, messages2]
outputs = llm.generate(prompts, sampling_params)
I think above method is more elegant than using openai-like api. Thank you!