vllm
vllm copied to clipboard
[Bug]: deploy Phi-3-mini-128k-instruct AssertionError
Your current environment
PyTorch version: 2.3.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.29.0 Libc version: glibc-2.35
Python version: 3.11.8 (main, Feb 26 2024, 21:39:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.2.0-39-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.1.66 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090
Nvidia driver version: 530.30.02 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900K CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5800.0000 CPU min MHz: 800.0000 BogoMIPS: 5990.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected
Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] torch==2.3.0 [pip3] triton==2.3.0 [pip3] vllm-nccl-cu12==2.18.1.0.1.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] torch 2.3.0 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi [conda] vllm-nccl-cu12 2.18.1.0.1.0 pypi_0 pypiROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.4.2 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 CPU Affinity NUMA Affinity GPU0 X PHB 0-31 N/A GPU1 PHB X 0-31 N/A
Legend:
X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
python -m vllm.entrypoints.openai.api_server --port 8681 --served-model-name chatglm3-6b-32k --model /home/hua-project/models/microsoft_phi3/LLM-Research/Phi-3-mini-128k-instruct --gpu-memory-utilization 0.4 --trust-remote-code
Traceback (most recent call last):
File "
Phi-3 support is already in main branch, maybe it's not in the pip package yet so I think you should build it from source
I tried it again using the following method and it was the same problem
I tried it again using the following method and it was the same problem
+1, it seems the issue was fixed in 4323 however reappear.
Phi-3 support is already in main branch, maybe it's not in the pip package yet so I think you should build it from source
Phi-3-mini-4k-instruct can work normally, but Phi-3-mini-128k-instruct can't. Can you confirm it again?
+1
For me, it appears to be working fine in the model commit bb5bf but is broken in the latest model commit d548c
+1 v0.5.0.post1 still have the problem
+1
Still happening on 0.5.1
Is this issue fixed in the current version of vLLM?
Closing as fixed by #9250