vllm icon indicating copy to clipboard operation
vllm copied to clipboard

RuntimeError on ROCm

Open rlrs opened this issue 1 year ago • 7 comments

Example of command: python benchmark_throughput.py --model gpt2 --input-len 256 --output-len 256

Output:

INFO 01-24 14:52:52 llm_engine.py:72] Initializing an LLM engine with config: model='gpt2', tokenizer='gpt2', tokenizer_mode=auto, revision=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=1024, download_dir=None, load_format=auto, tensor_parallel_size=1, quantization=None, enforce_eager=False, seed=0)
WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:
    PyTorch 2.1.1+cu121 with CUDA 1201 (you have 2.3.0.dev20240123+rocm5.7)
    Python  3.10.13 (you have 3.10.13)
  Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)
  Memory-efficient attention, SwiGLU, sparse and more won't be available.
  Set XFORMERS_MORE_DETAILS=1 for more details
INFO 01-24 14:52:55 weight_utils.py:164] Using model weights format ['*.safetensors']
Traceback (most recent call last):
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/benchmark_throughput.py", line 318, in <module>
    main(args)
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/benchmark_throughput.py", line 205, in main
    elapsed_time = run_vllm(requests, args.model, args.tokenizer,
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/benchmark_throughput.py", line 76, in run_vllm
    llm = LLM(
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/vllm-0.2.7+rocm573-py3.10-linux-x86_64.egg/vllm/entrypoints/llm.py", line 106, in __init__
    self.llm_engine = LLMEngine.from_engine_args(engine_args)
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/vllm-0.2.7+rocm573-py3.10-linux-x86_64.egg/vllm/engine/llm_engine.py", line 350, in from_engine_args
    engine = cls(*engine_configs,
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/vllm-0.2.7+rocm573-py3.10-linux-x86_64.egg/vllm/engine/llm_engine.py", line 112, in __init__
    self._init_cache()
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/vllm-0.2.7+rocm573-py3.10-linux-x86_64.egg/vllm/engine/llm_engine.py", line 303, in _init_cache
    num_blocks = self._run_workers(
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/vllm-0.2.7+rocm573-py3.10-linux-x86_64.egg/vllm/engine/llm_engine.py", line 977, in _run_workers
    driver_worker_output = getattr(self.driver_worker,
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/vllm-0.2.7+rocm573-py3.10-linux-x86_64.egg/vllm/worker/worker.py", line 116, in profile_num_available_blocks
    free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()
  File "/scratch/project_465000670/danish-foundation-models/scripts/lumi/eval/.venv/lib/python3.10/site-packages/torch/cuda/memory.py", line 655, in mem_get_info
    return torch.cuda.cudart().cudaMemGetInfo(device)
RuntimeError: HIP error: invalid argument
Compile with `TORCH_USE_HIP_DSA` to enable device-side assertions.

Installed packages:

accelerate                0.26.1
aiohttp                   3.9.1
aioprometheus             23.12.0
aiosignal                 1.3.1
annotated-types           0.6.0
anyio                     4.2.0
async-timeout             4.0.3
attrs                     23.2.0
bert-score                0.3.13
bitsandbytes              0.42.0
certifi                   2022.12.7
charset-normalizer        2.1.1
chex                      0.1.85
click                     8.1.7
cmake                     3.28.1
contourpy                 1.2.0
cycler                    0.12.1
datasets                  2.16.1
demjson3                  3.0.6
dill                      0.3.7
einops                    0.7.0
etils                     1.6.0
evaluate                  0.4.1
exceptiongroup            1.2.0
fastapi                   0.109.0
filelock                  3.9.0
flash-attn                2.0.4
flax                      0.8.0
fonttools                 4.47.2
frozenlist                1.4.1
fsspec                    2023.10.0
h11                       0.14.0
httptools                 0.6.1
huggingface-hub           0.20.3
idna                      3.4
importlib-resources       6.1.1
interegular               0.3.3
jax                       0.4.23
jaxlib                    0.4.23
Jinja2                    3.1.2
joblib                    1.3.2
jsonschema                4.21.1
jsonschema-specifications 2023.12.1
kiwisolver                1.4.5
Levenshtein               0.23.0
lm-format-enforcer        0.8.2
markdown-it-py            3.0.0
MarkupSafe                2.1.3
matplotlib                3.8.2
mdurl                     0.1.2
ml-dtypes                 0.3.2
mpmath                    1.2.1
msgpack                   1.0.7
multidict                 6.0.4
multiprocess              0.70.15
nest-asyncio              1.6.0
networkx                  3.0rc1
ninja                     1.11.1.1
nltk                      3.8.1
numpy                     1.26.3
openai                    0.28.1
opt-einsum                3.3.0
optax                     0.1.8
orbax-checkpoint          0.5.1
orjson                    3.9.12
packaging                 23.2
pandas                    1.5.3
Pillow                    9.3.0
pip                       23.3.2
protobuf                  3.20.3
psutil                    5.9.8
pyarrow                   14.0.2
pyarrow-hotfix            0.6
pydantic                  2.5.3
pydantic_core             2.14.6
Pygments                  2.17.2
pyinfer                   0.0.3
pyparsing                 3.1.1
python-dateutil           2.8.2
python-dotenv             0.21.1
pytorch-triton-rocm       2.2.0+dafe145982
pytz                      2023.3.post1
PyYAML                    6.0.1
quantile-python           1.1
rapidfuzz                 3.6.1
ray                       2.9.1
referencing               0.32.1
regex                     2023.12.25
requests                  2.31.0
responses                 0.18.0
rich                      13.7.0
rouge_score               0.1.2
rpds-py                   0.17.1
sacremoses                0.1.1
safetensors               0.4.1
scandeval                 9.2.0
scikit-learn              1.4.0
scipy                     1.12.0
sentencepiece             0.1.99
seqeval                   1.2.2
setuptools                65.5.0
six                       1.16.0
sniffio                   1.3.0
starlette                 0.35.1
sympy                     1.11.1
tabulate                  0.9.0
tensorstore               0.1.52
termcolor                 2.4.0
threadpoolctl             3.2.0
tiktoken                  0.5.2
tokenizers                0.15.1
toolz                     0.12.1
torch                     2.3.0.dev20240123+rocm5.7
torchaudio                2.2.0.dev20240123+rocm5.7
torchvision               0.18.0.dev20240123+rocm5.7
tqdm                      4.66.1
transformers              4.37.0
typing_extensions         4.9.0
urllib3                   1.26.13
uvicorn                   0.27.0
uvloop                    0.19.0
vllm                      0.2.7+rocm573
watchfiles                0.21.0
websockets                12.0
xformers                  0.0.23
xxhash                    3.4.1
yarl                      1.9.4
zipp                      3.17.0

This is running in the rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1 container on a node with MI250X GPUs.

rlrs avatar Jan 24 '24 12:01 rlrs