vllm icon indicating copy to clipboard operation
vllm copied to clipboard

[Bug]: Data Parallel with embed task hangs.

Open Adenialzz opened this issue 8 months ago • 1 comments

Your current environment

Output of python collect_env.py:

PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.31

Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-139-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090

Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   52 bits physical, 57 bits virtual
CPU(s):                          192
On-line CPU(s) list:             0-191
Thread(s) per core:              2
Core(s) per socket:              48
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           143
Model name:                      Intel(R) Xeon(R) Platinum 8463B
Stepping:                        8
Frequency boost:                 enabled
CPU MHz:                         3100.000
CPU max MHz:                     3800.0000
CPU min MHz:                     800.0000
BogoMIPS:                        5200.00
Virtualization:                  VT-x
L1d cache:                       4.5 MiB
L1i cache:                       3 MiB
L2 cache:                        192 MiB
L3 cache:                        210 MiB
NUMA node0 CPU(s):               0-47,96-143
NUMA node1 CPU(s):               48-95,144-191
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Not affected
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:        Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Vulnerable
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] numpy==1.26.2
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] onnx==1.17.0
[pip3] onnxruntime-gpu==1.21.0
[pip3] onnxslim==0.1.50
[pip3] pyzmq==26.2.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchdata==0.11.0
[pip3] torchelastic==0.2.2
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.2
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.2.0
[pip3] tritonclient==2.55.0
[conda] blas                      1.0                         mkl
[conda] cuda-cudart               12.1.105                      0    nvidia
[conda] cuda-cupti                12.1.105                      0    nvidia
[conda] cuda-libraries            12.1.0                        0    nvidia
[conda] cuda-nvrtc                12.1.105                      0    nvidia
[conda] cuda-nvtx                 12.1.105                      0    nvidia
[conda] cuda-opencl               12.3.101                      0    nvidia
[conda] cuda-runtime              12.1.0                        0    nvidia
[conda] ffmpeg                    4.3                  hf484d3e_0    pytorch
[conda] libcublas                 12.1.0.26                     0    nvidia
[conda] libcufft                  11.0.2.4                      0    nvidia
[conda] libcufile                 1.8.1.2                       0    nvidia
[conda] libcurand                 10.3.4.101                    0    nvidia
[conda] libcusolver               11.4.4.55                     0    nvidia
[conda] libcusparse               12.0.2.55                     0    nvidia
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
[conda] libnpp                    12.0.2.50                     0    nvidia
[conda] libnvjitlink              12.1.105                      0    nvidia
[conda] libnvjpeg                 12.1.1.14                     0    nvidia
[conda] mkl                       2023.1.0         h213fc3f_46344
[conda] mkl-service               2.4.0           py310h5eee18b_1
[conda] mkl_fft                   1.3.8           py310h5eee18b_0
[conda] mkl_random                1.2.4           py310hdb19cb5_0
[conda] numpy                     1.26.2          py310h5f9d8c6_0
[conda] numpy-base                1.26.2          py310hb5e798b_0
[conda] pytorch                   2.1.2           py3.10_cuda12.1_cudnn8.9.2_0    pytorch
[conda] pytorch-cuda              12.1                 ha16c6d3_5    pytorch
[conda] pytorch-mutex             1.0                        cuda    pytorch
[conda] torchaudio                2.1.2               py310_cu121    pytorch
[conda] torchelastic              0.2.2                    pypi_0    pypi
[conda] torchtriton               2.1.0                     py310    pytorch
[conda] torchvision               0.16.2              py310_cu121    pytorch
[conda] transformers              4.36.0                   pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
	GPU0	GPU1	NIC0	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	SYS	SYS	0-47,96-143	0		N/A
GPU1	SYS	 X 	SYS	48-95,144-191	1		N/A
NIC0	SYS	SYS	 X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Is there anything I do wrong? Thanks in advance.

🐛 Describe the bug

Hi, I got problem when trying to serving embedding task with data parallel.

I start serving like this:

model_path=/path/to/qwen25_vl_3b/
/opt/conda/bin/python -m vllm.entrypoints.openai.api_server \
    --model $model_path \
    --task embed \
    --gpu-memory-utilization 0.8 \
    --max-model-len 16384 \
    --data-parallel-size 2 \
    --limit-mm-per-prompt image=16,video=2 \

When setting --task generate, it works fine, but got stuck with --task embed after outputting this:

INFO 04-27 11:19:08 [__init__.py:239] Automatically detected platform cuda.
INFO 04-27 11:19:10 [api_server.py:1034] vLLM API server version 0.8.3
INFO 04-27 11:19:10 [api_server.py:1035] args: Namespace(host=None, port=8080, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='/mnt/data/user/tc_ai/klara/models/open_mllm/qwen25_vl_3b/train-model', task='embed', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=16384, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, data_parallel_size=2, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, prefix_caching_hash_algo='builtin', disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.8, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt={'image': 16, 'video': 2}, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, use_tqdm_on_load=True, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False)
WARNING 04-27 11:19:18 [arg_utils.py:1708] --task embed is not supported by the V1 Engine. Falling back to V0.
INFO 04-27 11:19:18 [api_server.py:246] Started engine process with PID 2454930
INFO 04-27 11:19:21 [__init__.py:239] Automatically detected platform cuda.
INFO 04-27 11:19:22 [llm_engine.py:242] Initializing a V0 LLM engine (v0.8.3) with config: model='/mnt/data/user/tc_ai/klara/models/open_mllm/qwen25_vl_3b/train-model', speculative_config=None, tokenizer='/mnt/data/user/tc_ai/klara/models/open_mllm/qwen25_vl_3b/train-model', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=16384, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=/mnt/data/user/tc_ai/klara/models/open_mllm/qwen25_vl_3b/train-model, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=None, chunked_prefill_enabled=False, use_async_output_proc=False, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=PoolerConfig(pooling_type=None, normalize=None, softmax=None, step_tag_id=None, returned_token_ids=None), compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=True,
INFO 04-27 11:19:24 [cuda.py:292] Using Flash Attention backend.
INFO 04-27 11:19:24 [parallel_state.py:836] Adjusting world_size=2 rank=0 distributed_init_method=tcp://127.0.0.1:33917 for DP

Before submitting a new issue...

  • [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Adenialzz avatar Apr 27 '25 03:04 Adenialzz

This issue seems related, but no response so far.

Adenialzz avatar Apr 27 '25 03:04 Adenialzz

I also face such problem.

YHPeter avatar Jun 11 '25 03:06 YHPeter

Meet the same problem, I think the key is:

--task embed is not supported by the V1 Engine. Falling back to V0.

xiaobanni avatar Jun 11 '25 12:06 xiaobanni

Fallback to V0, also not working.

YHPeter avatar Jun 11 '25 13:06 YHPeter

Fallback to V0, also not working.

I mean the bug may due to V0 don't support dp but V1 don't support embed task.

xiaobanni-gmail avatar Jun 11 '25 14:06 xiaobanni-gmail

Are there docs saying V0 doesn't support dp?

RonanKMcGovern avatar Aug 15 '25 11:08 RonanKMcGovern

On version 0.9.0, --task reward and DP still do not work together (--task reward fallbacks to V0). Is there a working solution to this problem? Maybe version 0.10.0 fixes this?

UPD: on v0.10.1 DP works nice with pooling model!

PavelShtykov avatar Aug 19 '25 10:08 PavelShtykov

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

github-actions[bot] avatar Nov 20 '25 02:11 github-actions[bot]