vllm icon indicating copy to clipboard operation
vllm copied to clipboard

[Usage]: vLLM and In the fly tool calling

Open ghsama opened this issue 1 week ago • 0 comments

Your current environment

Hey,

I was wondering if VLLM support tooling calls in a specific way. Let s say i want the completion to depends on the output of my tool calling . Does vLLM support that ? to do so it needs to have access to that function but there is no includes in the vllm command of the functions .. so how would it use them ?

Let say using the same example of get_weather, i have a prompt as follow :

# Instructions :
Using this categories, give an answer about what to do in a city today.
if the temperature is above 25 : go out for a tour
if the temperature is betwen 15 and 25 : visit friends
if temperature bellow 15 : stay home

you can use functions and api calls if some information are needed.

# Question :
What to do today in Texas ? go for a tour, stay home or stay visit friends ?

basically the model needs to call for get_weather, get the output then response .

can vllm automatically handle this ? in the sense that it stops the generation wait for get_weather execution, insert it and then use it in the context. Thank you

The output of `python collect_env.py`
INFO 02-18 21:25:53 __init__.py:190] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35

Python version: 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-193-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             48
On-line CPU(s) list:                0-47
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz
CPU family:                         6
Model:                              79
Thread(s) per core:                 1
Core(s) per socket:                 48
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           5199.99
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat umip md_clear arch_capabilities
Virtualization:                     VT-x
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          768 KiB (24 instances)
L1i cache:                          768 KiB (24 instances)
L2 cache:                           6 MiB (24 instances)
L3 cache:                           70 MiB (2 instances)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:             Mitigation; PTI
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.1.105
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.1
[pip3] torch==2.5.1+cu121
[pip3] torchaudio==2.5.1+cu121
[pip3] torchvision==0.20.1+cu121
[pip3] transformers==4.49.0
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-47    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=GPU-95acde4e-28ee-2b72-7465-81ad39e7acea
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NVIDIA_DRIVER_CAPABILITIES=all
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.1.1
PYTORCH_VERSION=2.5.1
LD_LIBRARY_PATH=/venv/main/lib/python3.10/site-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
PYTORCH_INDEX_URL=https://download.pytorch.org/whl/cu121
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

How would you like to use vllm

I want to run inference of a [specific model](put link here). I don't know how to integrate it with vllm.

Before submitting a new issue...

  • [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

ghsama avatar Feb 18 '25 21:02 ghsama