vllm icon indicating copy to clipboard operation
vllm copied to clipboard

[Bug]: AssertionError on loading unsloth/Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit

Open thesillystudent opened this issue 3 weeks ago • 2 comments

Your current environment

The output of `python collect_env.py`
INFO 02-03 07:11:32 __init__.py:183] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.1
Libc version: glibc-2.35

Python version: 3.12.0 (main, Dec 26 2024, 13:25:06) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.8.0-1020-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A10G
Nvidia driver version: 550.127.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               8
On-line CPU(s) list:                  0-7
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7R32
CPU family:                           23
Model:                                49
Thread(s) per core:                   2
Core(s) per socket:                   4
Socket(s):                            1
Stepping:                             0
BogoMIPS:                             5600.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            128 KiB (4 instances)
L1i cache:                            128 KiB (4 instances)
L2 cache:                             2 MiB (4 instances)
L3 cache:                             16 MiB (1 instance)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-7
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.48.2
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-7     0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

LD_LIBRARY_PATH=/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/cv2/../../lib64:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:/opt/aws-ofi-nccl/lib:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/cuda-12.4/extras/CUPTI/lib64:/usr/local/lib:/usr/lib:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:/opt/aws-ofi-nccl/lib:/usr/local/cuda-12.4/lib:/usr/local/cuda-12.4/lib64:/usr/local/cuda-12.4:/usr/local/cuda-12.4/targets/x86_64-linux/lib/:/usr/local/cuda-12.4/extras/CUPTI/lib64:/usr/local/lib:/usr/lib
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

Assertion error on loading mistral small 2501 with unsloth weights

python3 -m vllm.entrypoints.openai.api_server --model unsloth/Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit --tool-call-parser mistral --enable-auto-tool-choice --max-model-len 8192 --gpu-memory-utilization 0.98 --download-dir ./models_cache --host 0.0.0.0 --port 8000 --quantization bitsandbytes --load-format bitsandbytes

Error trace -

File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 378, in run_mp_engine
    engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 121, in from_engine_args
    return cls(ipc_path=ipc_path,
           ^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 73, in __init__
    self.engine = LLMEngine(*args, **kwargs)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/engine/llm_engine.py", line 271, in __init__
    self.model_executor = executor_class(vllm_config=vllm_config, )
                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/executor/executor_base.py", line 49, in __init__
    self._init_executor()
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 40, in _init_executor
    self.collective_rpc("load_model")
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 49, in collective_rpc
    answer = run_method(self.driver_worker, method, args, kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/utils.py", line 2208, in run_method
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/worker/worker.py", line 182, in load_model
    self.model_runner.load_model()
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/worker/model_runner.py", line 1113, in load_model
    self.model = get_model(vllm_config=self.vllm_config)
                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/model_loader/__init__.py", line 12, in get_model
    return loader.load_model(vllm_config=vllm_config)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/model_loader/loader.py", line 1201, in load_model
    self._load_weights(model_config, model)
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/model_loader/loader.py", line 1111, in _load_weights
    loaded_weights = model.load_weights(qweight_iterator)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/models/llama.py", line 565, in load_weights
    return loader.load_weights(
           ^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/models/utils.py", line 233, in load_weights
    autoloaded_weights = set(self._load_module("", self.module, weights))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/models/utils.py", line 194, in _load_module
    yield from self._load_module(prefix,
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/models/utils.py", line 171, in _load_module
    loaded_params = module_load_weights(weights)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/models/llama.py", line 438, in load_weights
    weight_loader(param, loaded_weight)
  File "/home/ubuntu/.pyenv/versions/3.12.0/lib/python3.12/site-packages/vllm/model_executor/layers/linear.py", line 1113, in weight_loader
    assert param_data.shape == loaded_weight.shape

I printed param_data.shape - torch.Size([83886080, 1]) and loaded_weight.shape - torch.Size([5120, 32768])

Before submitting a new issue...

  • [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

thesillystudent avatar Feb 03 '25 07:02 thesillystudent