uovos icon indicating copy to clipboard operation
uovos copied to clipboard

Unsupervised Online Video Object Segmentation with Motion Property Understanding

Unsupervised Online Video Object Segmentation with Motion Property Understanding

Tao Zhuo, Zhiyong Cheng, Peng Zhang, Yongkang Wong, and Mohan Kankanhalli

Results on DAVIS-2016 TrainVal Dataset (50 videos)

Measure NLC LMP FSEG ARP UOVOS
J Mean 64.1 69.7 71.6 76.3 77.8
J Recall 73.1 82.9 87.7 89.2 93.6
J Decay 8.6 5.6 1.7 3.6 2.1
F Mean 59.3 66.3 65.8 71.1 72.0
F Recall 65.8 78.3 79.0 82.8 87.7
F Decay 8.6 6.7 4.3 7.3 3.8
T 36.6 68.8 29.5 35.9 33.0

NLC: Video Segmentation by Non-Local Consensus voting. A. Faktor, M. Irani, BMVC 2014.
LMP: Learning Motion Patterns in Videos. P. Tokmakov, K. Alahari, C. Schmid, CVPR 2017.
FSEG: FusionSeg: Learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. S. Jain, B. Xiong, K. Grauman, CVPR 2017.
ARP: Primary Object Segmentation in Videos Based on Region Augmentation and Reduction. Y.J. Koh, C.-S. Kim, CVPR 2017.

Setup

Ubuntu
Matlab
Python2.7
Opencv_3.4
Mask-RCNN https://github.com/matterport/Mask_RCNN

Citation

If you use this code, please cite the following paper:

@article{zhuo2018unsupervised, title={Unsupervised Online Video Object Segmentation with Motion Property Understanding}, author={Zhuo, Tao and Cheng, Zhiyong and Zhang, Peng and Wong, Yongkang and Kankanhalli, Mohan}, journal={IEEE Transaction on Image Processing}, year={2019} }

Contact

Tao Zhuo ([email protected])