flashtext
flashtext copied to clipboard
Extract Keywords from sentence or Replace keywords in sentences.
========= FlashText
.. image:: https://api.travis-ci.org/vi3k6i5/flashtext.svg?branch=master :target: https://travis-ci.org/vi3k6i5/flashtext :alt: Build Status
.. image:: https://readthedocs.org/projects/flashtext/badge/?version=latest :target: http://flashtext.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
.. image:: https://badge.fury.io/py/flashtext.svg :target: https://badge.fury.io/py/flashtext :alt: Version
.. image:: https://coveralls.io/repos/github/vi3k6i5/flashtext/badge.svg?branch=master :target: https://coveralls.io/github/vi3k6i5/flashtext?branch=master :alt: Test coverage
.. image:: https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000 :target: https://github.com/vi3k6i5/flashtext/blob/master/LICENSE :alt: license
This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm <https://arxiv.org/abs/1711.00046>
_.
Installation
::
$ pip install flashtext
API doc
Documentation can be found at FlashText Read the Docs <http://flashtext.readthedocs.io/>
_.
Usage
Extract keywords
>>> from flashtext import KeywordProcessor
>>> keyword_processor = KeywordProcessor()
>>> # keyword_processor.add_keyword(
Replace keywords >>> keyword_processor.add_keyword('New Delhi', 'NCR region') >>> new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.') >>> new_sentence >>> # 'I love New York and NCR region.'
Case Sensitive example >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor(case_sensitive=True) >>> keyword_processor.add_keyword('Big Apple', 'New York') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.') >>> keywords_found >>> # ['Bay Area']
Span of keywords extracted >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('Big Apple', 'New York') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.', span_info=True) >>> keywords_found >>> # [('New York', 7, 16), ('Bay Area', 21, 29)]
Get Extra information with keywords extracted >>> from flashtext import KeywordProcessor >>> kp = KeywordProcessor() >>> kp.add_keyword('Taj Mahal', ('Monument', 'Taj Mahal')) >>> kp.add_keyword('Delhi', ('Location', 'Delhi')) >>> kp.extract_keywords('Taj Mahal is in Delhi.') >>> # [('Monument', 'Taj Mahal'), ('Location', 'Delhi')] >>> # NOTE: replace_keywords feature won't work with this.
No clean name for Keywords >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('Big Apple') >>> keyword_processor.add_keyword('Bay Area') >>> keywords_found = keyword_processor.extract_keywords('I love big Apple and Bay Area.') >>> keywords_found >>> # ['Big Apple', 'Bay Area']
Add Multiple Keywords simultaneously >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_dict = { >>> "java": ["java_2e", "java programing"], >>> "product management": ["PM", "product manager"] >>> } >>> # {'clean_name': ['list of unclean names']} >>> keyword_processor.add_keywords_from_dict(keyword_dict) >>> # Or add keywords from a list: >>> keyword_processor.add_keywords_from_list(["java", "python"]) >>> keyword_processor.extract_keywords('I am a product manager for a java_2e platform') >>> # output ['product management', 'java']
To Remove keywords >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_dict = { >>> "java": ["java_2e", "java programing"], >>> "product management": ["PM", "product manager"] >>> } >>> keyword_processor.add_keywords_from_dict(keyword_dict) >>> print(keyword_processor.extract_keywords('I am a product manager for a java_2e platform')) >>> # output ['product management', 'java'] >>> keyword_processor.remove_keyword('java_2e') >>> # you can also remove keywords from a list/ dictionary >>> keyword_processor.remove_keywords_from_dict({"product management": ["PM"]}) >>> keyword_processor.remove_keywords_from_list(["java programing"]) >>> keyword_processor.extract_keywords('I am a product manager for a java_2e platform') >>> # output ['product management']
To check Number of terms in KeywordProcessor >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_dict = { >>> "java": ["java_2e", "java programing"], >>> "product management": ["PM", "product manager"] >>> } >>> keyword_processor.add_keywords_from_dict(keyword_dict) >>> print(len(keyword_processor)) >>> # output 4
To check if term is present in KeywordProcessor >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('j2ee', 'Java') >>> 'j2ee' in keyword_processor >>> # output: True >>> keyword_processor.get_keyword('j2ee') >>> # output: Java >>> keyword_processor['colour'] = 'color' >>> keyword_processor['colour'] >>> # output: color
Get all keywords in dictionary >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('j2ee', 'Java') >>> keyword_processor.add_keyword('colour', 'color') >>> keyword_processor.get_all_keywords() >>> # output: {'colour': 'color', 'j2ee': 'Java'}
For detecting Word Boundary currently any character other than this \\w
[A-Za-z0-9_]
is considered a word boundary.
To set or add characters as part of word characters >>> from flashtext import KeywordProcessor >>> keyword_processor = KeywordProcessor() >>> keyword_processor.add_keyword('Big Apple') >>> print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.')) >>> # ['Big Apple'] >>> keyword_processor.add_non_word_boundary('/') >>> print(keyword_processor.extract_keywords('I love Big Apple/Bay Area.')) >>> # []
Test
::
$ git clone https://github.com/vi3k6i5/flashtext
$ cd flashtext
$ pip install pytest
$ python setup.py test
Build Docs
::
$ git clone https://github.com/vi3k6i5/flashtext
$ cd flashtext/docs
$ pip install sphinx
$ make html
$ # open _build/html/index.html in browser to view it locally
Why not Regex?
It's a custom algorithm based on Aho-Corasick algorithm <https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm>
_ and Trie Dictionary <https://en.wikipedia.org/wiki/Trie Dictionary>
_.
.. image:: https://github.com/vi3k6i5/flashtext/raw/master/benchmark.png :target: https://twitter.com/RadimRehurek/status/904989624589803520 :alt: Benchmark
Time taken by FlashText to find terms in comparison to Regex.
.. image:: https://thepracticaldev.s3.amazonaws.com/i/xruf50n6z1r37ti8rd89.png
Time taken by FlashText to replace terms in comparison to Regex.
.. image:: https://thepracticaldev.s3.amazonaws.com/i/k44ghwp8o712dm58debj.png
Link to code for benchmarking the Find Feature <https://gist.github.com/vi3k6i5/604eefd92866d081cfa19f862224e4a0>
_ and Replace Feature <https://gist.github.com/vi3k6i5/dc3335ee46ab9f650b19885e8ade6c7a>
_.
The idea for this library came from the following StackOverflow question <https://stackoverflow.com/questions/44178449/regex-replace-is-taking-time-for-millions-of-documents-how-to-make-it-faster>
_.
Citation
The original paper published on FlashText algorithm <https://arxiv.org/abs/1711.00046>
_.
::
@ARTICLE{2017arXiv171100046S,
author = {{Singh}, V.},
title = "{Replace or Retrieve Keywords In Documents at Scale}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1711.00046},
primaryClass = "cs.DS",
keywords = {Computer Science - Data Structures and Algorithms},
year = 2017,
month = oct,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv171100046S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
The article published on Medium freeCodeCamp <https://medium.freecodecamp.org/regex-was-taking-5-days-flashtext-does-it-in-15-minutes-55f04411025f>
_.
Contribute
- Issue Tracker: https://github.com/vi3k6i5/flashtext/issues
- Source Code: https://github.com/vi3k6i5/flashtext/
License
The project is licensed under the MIT license.