ai icon indicating copy to clipboard operation
ai copied to clipboard

Example using Streaming Response for FastAPI.

Open mattzcarey opened this issue 1 year ago • 15 comments

Lots of people write their Langchain apis in Python, not using RSC.

A common tech stack is using FastAPI on the backend with NextJS/React for the frontend. It would be great to show an example of this using FastAPI Streaming Response.

This would really help us building Quivr..

mattzcarey avatar Jun 19 '23 10:06 mattzcarey

@mattzcarey I'm thinking of using similar tech stack, but it seems that vercel doesn't support python runtime streaming. could you please share your stack in more detail. I'm currently using langchain js b deployed to vercel edge function and streaming response back to client. But it is apparent that the python version is far more featured, thus my reason to switch.

jasan-s avatar Jun 22 '23 22:06 jasan-s

@jasan-s I have managed to do this with langchain callbacks and Streaming Response from FastAPi. You can check out the 'stream' route in the Quivr codebase.

mattzcarey avatar Jun 24 '23 15:06 mattzcarey

@jasan-s I have managed to do this with langchain callbacks and Streaming Response from FastAPi. You can check out the 'stream' route in the Quivr codebase.

Did you deploy quiver to vercel?

jasan-s avatar Jun 24 '23 15:06 jasan-s

@jasan-s I have managed to do this with langchain callbacks and Streaming Response from FastAPi. You can check out the 'stream' route in the Quivr codebase.

Did you deploy quiver to vercel?

Yes it can be.

mattzcarey avatar Jun 25 '23 13:06 mattzcarey

I Had create a gist example:

https://user-images.githubusercontent.com/105971119/277059459-0109bc03-57a7-493d-bfa3-6152745f3349.mp4

kallebysantos avatar Oct 20 '23 21:10 kallebysantos

Having a native support for converting streaming responses from FastAPI/any other HTTP Server in Next.js API routes (with the help of SDK) will be helpful in my usecase. Since I don't want to directly call FastAPI endpoint using useChat hook, as I manage the authentication layer in Next.js.

satyamdalai avatar Oct 25 '23 18:10 satyamdalai

I came across this thread looking for the same thing but wanted to use the openai library (rather than langchain as in the gist above) and the useChat hook. Here's what I ended up doing:

server.py

from openai import AsyncOpenAI

from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse

app = FastAPI()

# Added because the frontend and this backend run on separate ports, should change depending on your setup, not a good idea in prod
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

client = AsyncOpenAI()

@app.post("/ask")
async def ask(req: dict):
    stream = await client.chat.completions.create(
        messages=req["messages"],
        model="gpt-3.5-turbo",
        stream=True,
    )

    async def generator():
        async for chunk in stream:
            yield chunk.choices[0].delta.content or ""

    response_messages = generator()
    return StreamingResponse(response_messages, media_type="text/event-stream")

Run with

uvicorn server:app --reload

Example frontend src/app/page.tsx in a new Next.js app

"use client";

import { useChat } from "ai/react";

export default function Home() {
  const { messages, input, handleInputChange, handleSubmit } = useChat({
    api: "http://127.0.0.1:8000/ask"
  });

  return (
    <main className="flex min-h-screen flex-col items-center justify-between p-24">
      <div>
        {messages.map((m) => (
          <div key={m.id}>
            {m.role === "user" ? "User: " : "AI: "}
            {m.content}
          </div>
        ))}

        <form onSubmit={handleSubmit}>
          <label>
            Say something...
            <input value={input} onChange={handleInputChange} />
          </label>
          <button type="submit">Send</button>
        </form>
      </div>
    </main>
  );
}

danielcorin avatar Feb 02 '24 15:02 danielcorin

I think that Issue should be mark as complete. We had provide useful examples that solves the question.

kallebysantos avatar Feb 03 '24 09:02 kallebysantos

Building off the above answers, here's an example using experimental_StreamData:

server.py

from openai import AsyncOpenAI

from utils import stream_chunk #formats chunks for use with experimental_StreamData

from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse

app = FastAPI()

# Added because the frontend and this backend run on separate ports, should change depending on your setup, not a good idea in prod
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
    expose_headers=[ "X-Experimental-Stream-Data"],  # this is needed for streaming data header to be read by the client
)

client = AsyncOpenAI()

@app.post("/ask")
async def ask(req: dict):
    stream = await client.chat.completions.create(
        messages=req["messages"],
        model="gpt-3.5-turbo",
        stream=True,
    )

    async def generator():
        async for chunk in stream:
            yield stream_chunk(chunk.choices[0].delta.content or "", "text")
        yield stream_chunk([{"foo":"bar"}], "data") # send streaming data after 

    response_messages = generator()
    return StreamingResponse(response_messages, media_type="text/event-stream",  headers={"X-Experimental-Stream-Data": "true"})

Where stream_chunk is a util that looks like this:

utils.py

# transforms the chunk into a stream part compatible with the vercel/ai
def stream_chunk(chunk, type: str = "text"):
    code = get_stream_part_code(type)
    formatted_stream_part = f"{code}:{json.dumps(chunk, separators=(',', ':'))}\n"
    return formatted_stream_part

# given a type returns the code for the stream part
def get_stream_part_code(stream_part_type: str) -> str:
    stream_part_types = {
        "text": "0",
        "function_call": "1",
        "data": "2",
        "error": "3",
        "assistant_message": "4",
        "assistant_data_stream_part": "5",
        "data_stream_part": "6",
        "message_annotations_stream_part": "7",
    }
    return stream_part_types[stream_part_type]

DanLeininger avatar Feb 05 '24 00:02 DanLeininger

@DanLeininger your setup works for me when using useChat(). I want to add some custom onCompletion handlers with AI stream in route handler. My server setup is exactly like yours (again works with useChat) but im getting no response with:


export async function POST(req: Request) {
const json = await req.json()
const { messages, previewToken } = json
const userId = (await auth())?.user.id

if (!userId) {
return new Response('Unauthorized', {
status: 401
})
}
const data = {
messages: [{ role: 'user', content: 'Hello' }]
}
const fetchResponse = await fetch('http://127.0.0.1:8000/ask', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(data)
})
const reader = fetchResponse
console.log('Reader is', reader)
const myStream = AIStream(reader, undefined, {
onStart: async () => {
console.log('Stream started')
},
onCompletion: async (completion: string) => {
console.log('Completion completed', completion)
},
onFinal: async (completion: string) => {
console.log('Stream completed', completion)
}
})
return new StreamingTextResponse(myStream)
}

szymonzmyslony avatar Feb 09 '24 18:02 szymonzmyslony

@DanLeininger your setup works for me when using useChat(). I want to add some custom onCompletion handlers with AI stream in route handler. My server setup is exactly like yours (again works with useChat) but im getting no response with:


export async function POST(req: Request) {
const json = await req.json()
const { messages, previewToken } = json
const userId = (await auth())?.user.id

if (!userId) {
return new Response('Unauthorized', {
status: 401
})
}
const data = {
messages: [{ role: 'user', content: 'Hello' }]
}
const fetchResponse = await fetch('http://127.0.0.1:8000/ask', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(data)
})
const reader = fetchResponse
console.log('Reader is', reader)
const myStream = AIStream(reader, undefined, {
onStart: async () => {
console.log('Stream started')
},
onCompletion: async (completion: string) => {
console.log('Completion completed', completion)
},
onFinal: async (completion: string) => {
console.log('Stream completed', completion)
}
})
return new StreamingTextResponse(myStream)
}

Having the same issue @danielcorin @DanLeininger would be great to have some help

Udbhav8 avatar Feb 14 '24 10:02 Udbhav8

I think that Issue should be mark as complete. We had provide useful examples that solves the question.

We still need a useful example that include tool-calling and streaming data.

ichitaka avatar Feb 19 '24 21:02 ichitaka

@szymonzmyslony @Udbhav8 In our use case we're bypassing Next.js api routes / route handlers and streaming from Fast API directly to the client / useChat() and so haven't attempted passing anything through AIStream

DanLeininger avatar Feb 19 '24 23:02 DanLeininger

@szymonzmyslony @Udbhav8 @satyamdalai have you found out how to add some custom onCompletion handlers with AI stream in the route handler, maybe using the AIStream?

ErikDale avatar Apr 03 '24 10:04 ErikDale

If your endpoint sends a chunked text stream, you can useCompletion and useChat with streamMode: "text"

lgrammel avatar May 10 '24 11:05 lgrammel

@DanLeininger your answer worked for me, my use case was that I had a fast API back end which used langgraph agent and had to do the streaming as you mentioned. it worked properly, thank you!

ashen007 avatar May 30 '24 07:05 ashen007

I came across this thread looking for the same thing but wanted to use the openai library (rather than langchain as in the gist above) and the useChat hook. Here's what I ended up doing:

server.py

from openai import AsyncOpenAI

from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse

app = FastAPI()

# Added because the frontend and this backend run on separate ports, should change depending on your setup, not a good idea in prod
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

client = AsyncOpenAI()

@app.post("/ask")
async def ask(req: dict):
    stream = await client.chat.completions.create(
        messages=req["messages"],
        model="gpt-3.5-turbo",
        stream=True,
    )

    async def generator():
        async for chunk in stream:
            yield chunk.choices[0].delta.content or ""

    response_messages = generator()
    return StreamingResponse(response_messages, media_type="text/event-stream")

Run with

uvicorn server:app --reload

Example frontend src/app/page.tsx in a new Next.js app

"use client";

import { useChat } from "ai/react";

export default function Home() {
  const { messages, input, handleInputChange, handleSubmit } = useChat({
    api: "http://127.0.0.1:8000/ask"
  });

  return (
    <main className="flex min-h-screen flex-col items-center justify-between p-24">
      <div>
        {messages.map((m) => (
          <div key={m.id}>
            {m.role === "user" ? "User: " : "AI: "}
            {m.content}
          </div>
        ))}

        <form onSubmit={handleSubmit}>
          <label>
            Say something...
            <input value={input} onChange={handleInputChange} />
          </label>
          <button type="submit">Send</button>
        </form>
      </div>
    </main>
  );
}

Is this working in production on Vercel? @danielcorin

yachty66 avatar Jul 03 '24 06:07 yachty66

Has anyone managed streaming tool calls (eg pydantic model) result to useChat or useObject hook?

chrris99 avatar Jul 04 '24 10:07 chrris99

Has anyone managed streaming tool calls (eg pydantic model) result to useChat or useObject hook?

https://github.com/virattt/financial-agent-ui/blob/main/frontend/src/app/action.tsx

maxdata avatar Jul 07 '24 03:07 maxdata

Hey guys, we have introduced Stream Protocols that help you develop custom backends and frontends for your use case, e.g., to provide compatible API endpoints that are implemented in a different language such as Python.

You can check out the newly added example that uses FastAPI as a backend in an application that uses Next.js and the useChat hook.

jeremyphilemon avatar Jul 30 '24 07:07 jeremyphilemon

Hey guys, we have introduced Stream Protocols that help you develop custom backends and frontends for your use case, e.g., to provide compatible API endpoints that are implemented in a different language such as Python.

You can check out the newly added example that uses FastAPI as a backend in an application that uses Next.js and the useChat hook.

@jeremyphilemon I have been trying to use protocols to get my app streaming on deployments but nothing is working. I am using the fastapi examples and while they work locally, they don't on production. What am I doing wrong?

This is my src/app/simple/page.tsx

"use client";
export const runtime = 'edge';
export const dynamic = 'force-dynamic'; // always run dynamically


import { useChat } from 'ai/react';
import { unstable_noStore as noStore } from 'next/cache';

export default function Page() {
    noStore();
  const { messages, input, handleSubmit, handleInputChange, isLoading } =
    useChat({
      api: '/api/chat?protocol=text',
      streamProtocol: 'text',
      headers: {
        'Content-Type': 'application/json'
      },
      body: { thread_id: "" },
    });

    const handleSubmitWithQuery = async (e: React.FormEvent<HTMLFormElement>) => {
        e.preventDefault();
        handleSubmit(e, {
          body: { query: input, thread_id: "" }
        });
      };

  return (
    <div className="flex flex-col gap-2">
      <div className="flex flex-col p-4 gap-2">
        {messages.map(message => (
          <div key={message.id} className="flex flex-row gap-2">
            <div className="w-24 text-zinc-500 flex-shrink-0">{`${message.role}: `}</div>
            <div className="flex flex-col gap-2">{message.content}</div>
          </div>
        ))}
      </div>
      <form
        onSubmit={handleSubmitWithQuery}
        className="flex flex-col fixed bottom-0 w-full border-t"
      >
        <input
          value={input}
          placeholder="Why is the sky blue?"
          onChange={handleInputChange}
          className="w-full p-4 outline-none bg-transparent"
          disabled={isLoading}
        />
      </form>
    </div>
  );
}

And this is my api endpoint in my api/folder:

class ClientMessage(BaseModel):
    role: str
    content: str

class Request(BaseModel):
    messages: List[ClientMessage]

def stream_text(messages: List[ClientMessage]):
    stream = client.chat.completions.create(
        messages=[{"role": msg.role, "content": msg.content} for msg in messages],
        model="gpt-4",
        stream=True,
    )

    for chunk in stream:
        if chunk.choices[0].delta.content is not None:
            yield chunk.choices[0].delta.content

@app.post("/api/chat")
async def handle_chat(request: Request, protocol: str = Query('text')):
    response = StreamingResponse(stream_text(request.messages), media_type="text/plain")
    return response

I have enabled streaming on all function using the env variables in vercel but still nothing seems to enable streaming on deployments

olivergom avatar Aug 05 '24 14:08 olivergom

@jeremyphilemon Looks like streamProtocol: 'text' is not working with useChat unfortunately. messages array will always be empty in that case.

villesau avatar Aug 06 '24 20:08 villesau

@villesau can you double check your setup? i just verified on the latest main and it works as expected.

lgrammel avatar Aug 08 '24 11:08 lgrammel

@olivergom this might be a current deployment limitation. we will inform the corresponding team

lgrammel avatar Aug 08 '24 11:08 lgrammel