SimCSE-Chinese-Pytorch icon indicating copy to clipboard operation
SimCSE-Chinese-Pytorch copied to clipboard

SimCSE在中文上的复现,有监督+无监督

SimCSE-Chinese-Pytorch

SimCSE在中文上的复现,无监督 + 有监督

1. 背景

最近看了SimCSE这篇论文,便对论文做了pytorch版的复现和评测

  • 论文:https://arxiv.org/pdf/2104.08821.pdf
  • 官方:https://github.com/princeton-nlp/SimCSE

2. 文件

> datasets		数据集文件夹
   > cnsd-snli
   > STS-B
> pretrained_model	各种预训练模型文件夹
> saved_model		微调之后保存的模型文件夹
  data_preprocess.py	snli数据集的数据预处理
  simcse_sup.py		有监督训练
  simcse_unsup.py	无监督训练

3. 使用

需要将公开数据集和预训练模型放到指定目录下, 并检查在代码中的位置是否对应

# 预训练模型目录
BERT = 'pretrained_model/bert_pytorch'
model_path = BERT 
# 微调后参数存放位置
SAVE_PATH = './saved_model/simcse_unsup.pt'
# 数据目录
SNIL_TRAIN = './datasets/cnsd-snli/train.txt'
STS_TRAIN = './datasets/STS-B/cnsd-sts-train.txt'
STS_DEV = './datasets/STS-B/cnsd-sts-dev.txt'
STS_TEST = './datasets/STS-B/cnsd-sts-test.txt'

数据预处理(需要先执行此文件):

python data_preprocess.py

无监督训练

python simcse_unsup.py

有监督训练

python simcse_sup.py

4. 下载

数据集:

  • CNSD:https://github.com/pluto-junzeng/CNSD

预训练模型:

5. 测评

测评指标为spearman相关系数

无监督:batch_size=64,lr=1e-5,droupout_rate=0.3,pooling=cls, 抽样10000样本

模型 STS-B dev STS-B test
BERT 0.7308 0.6725
BERT-wwm 0.7229 0.6628
BERT-wwm-ext 0.7271 0.6669
RoBERTa-wwm-ext 0.7558 0.7141

有监督:batch_size=64,lr=1e-5,pooling=cls

模型 STS-B dev STS-B test 收敛所需样本数
BERT 0.8016 0.7624 23040
BERT-wwm 0.8022 0.7572 16640
BERT-wwm-ext 0.8081 0.7539 33280
RoBERTa-wwm-ext 0.8135 0.7763 38400

6. 参考

  • https://arxiv.org/pdf/2104.08821.pdf
  • 苏剑林. (Apr. 26, 2021). 《中文任务还是SOTA吗?我们给SimCSE补充了一些实验 》[Blog post]. Retrieved from https://kexue.fm/archives/8348
  • https://github.com/zhengyanzhao1997/NLP-model/tree/main/model/model/Torch_model/SimCSE-Chinese