ML-DS-Guide
ML-DS-Guide copied to clipboard
Complied Resources for learning Machine Learning & Data Science
ML & DS Guide
Complied Resources for learning Machine Learning & Data Science
This list is continuously updated - And if you have some good suggestions or resources to share, create pull request and contribute.
Table of Contents
-
Guide
- Maths
- Data Science Libs
- Mini Project #1
- Machine Learning Beginner Courses
- Mini Projects #2
- Data Science Stuff
- Machine Learning Stuff
- Final Projects
- Projects Ideas , Guide & Tutorial
-
Online Course, Books & YT Playlists
- Books
- Courses
- YT Playlist
-
Commonly Used Websites and YT Channels
- Websites
- YT Channels
- Other's Roadmap/Guides & Resources
Guide
Maths
- [ ] Linear Algebra :
- [ ] Calculus :
- [ ] Stats :
- [ ] Probability :
Data Science Libs
Major/Imp Libs are Numpy, Pandas, Matplotlib, Seaborn,
- [ ] Numpy :
- [ ] Video Tutorial: Numpy Crash Course
- [ ] Practice: Numpy 100Q
- [ ] Docs: Numpy Docs
- [ ] Pandas :
- [ ] Video Tutorial: Pandas Crash Course
- [ ] Tutorial/Course with Practice labs: Kaggle Course
- [ ] Practice: Pandas 100Q
- [ ] Docs: Pandas Docs
- [ ] Matplotlib :
- [ ] Video Tutorial: Matplotlib Crash Course
- [ ] Practice :
- [ ] 11 Plots to plot
- [ ] Matplotlib Exercise
- [ ] Docs : Matplotlib Docs
- [ ] Seaborn :
- [ ] Tutorial :
- [ ] Practice :
- [ ] Docs : Seaborn Docs
Mini Project #1
Data Analysis Using Data Science Libraries
- [ ] Guided Project :
- [ ] Self Guided Project :
- [ ] Investigating-Netflix-Movies-and-Guest-Stars-in-The-Office
- [ ] Check Data Analysis DataCamp Projects
Machine Learning Beginner Courses
Take Up few Beginner Courses to learn about the fundamentals of ML Models, ML Algorithms, Data Processing Technique, Model Evaluation etc .
- [ ] Kaggle Intro to Machine Learning
- [ ] Kaggle Intermediate Machine Learning
- [ ] Andrew Ng ML Course
- [ ] Udemy A-Z Machine Learning Course
- [ ] Sentdex ML Course
- [ ] Microsoft ML-For-Beginners
- [ ] Scikit Learn ML Course
Mini Projects #2
- [ ] Regression :
- [ ] Boston House Price Prediction
- [ ] Classification :
- [ ] Iris Classification
- [ ] Red Wine Quality
- [ ] Clustering :
- [ ] Customer Segmentation
Data Science Stuff
- [ ] Data Collection
- [ ] DataSets :
- [ ] PapersWithCode Datasets
- [ ] Kaggle Datasets
- [ ] UCI Datasets
- [ ] Google Dataset Search
- [ ] AWS Open Data Search
- [ ] Wiki's List of Datasets
- [ ] API :
- [ ] Scraping :
- [ ] BeautifulSoup
- [ ] Scrapy
- [ ] DataSets :
- [ ] Databases:
- [ ] SQL :
- [ ] MYSQL
- [ ] PostgreSQL
- [ ] NOSQL :
- [ ] MongoDB
- [ ] SQL :
- [ ] EDA :
- [ ] Data Preprocessing :
- [ ] Preprocessing Overview & Imp Concepts
- [ ] Feature Engineering
- [ ] Feature Selection
Machine Learning Stuff
Read in Details about the ML Algorithms from Books mentioned below
- [ ] Machine Learning Algorithms
- [ ] Supervised ML Algorithms
- [ ] Linear Regression:
- [ ] Basics :
- [ ] Tutorial :
- [ ] Implementation :
- [ ] Application :
- [ ] Logistic Regression:
- [ ] Decision Tree:
- [ ] Naive Bayes
- [ ] KNN
- [ ] Random Forest:
- [ ] AdaBoost
- [ ] Gradient Boosting
- [ ] GBM
- [ ] XGBoost:
- [ ] LightGBM
- [ ] CatBoost
- [ ] Linear Regression:
- [ ] Unsupervised ML Algo
- [ ] Clustering
- [ ] K Means
- [ ] DBSSCAN
- [ ] Hierarchal Clustering
- [ ] Dimensionality Reduction
- [ ] PCA
- [ ] LDA
- [ ] Kernel PCA
- [ ] Clustering
- [ ] Reinforcement
- [ ] Deep Q Networks
- [ ] Deep Deterministic Policy Gradient
- [ ] A3C Algo
- [ ] Q Learning
- [ ] Supervised ML Algorithms
- [ ] Model Evaluation :
- [ ] Model Selection
- [ ] Hyper Parameter Tuning
- [ ] Pipeline
- [ ] Model Deployment :
- [ ] Flask WebApp & API
- [ ] Fast API
- [ ] Streamlit
Final Projects
Projects Ideas, Guide & Tutorial
- ML-ProjectKart
- 500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code
- Simplilearn
- Data Flair
- KDNuggets
- Upgrad
- Crio
- Analyticsindiamag
- Scaler Blog
Online Course, Books & YT Playlists
Books
- Introduction to Machine Learning with Python: A Guide for Data Scientists
- Hands–On Machine Learning with Scikit–Learn and TensorFlow
- An Introduction to Statistical Learning
- The Elements of Statistical Learning
- Practical Statistics for Data Scientists: 50 Essential Concepts
Courses
- Google ML Crash Course
- Udemy Machine Learning A-Z™: Hands-On Python & R In Data Science|
- Udacity Machine Learning by Georgia Tech
- Udacity Machine Learning
- Udacity Machine Learning Engineer NanoDegree
- Yorko Open Machine Learning Course
- DataQuest Platform
- DataCamp Platform
YT Playlist
Commonly Used Websites and YT Channels
Websites
YT Channels
- Artificial Intelligence - All in One
- DigitalSreeni
- Kaggle
- 3Blue1Brown
- DeepLearningAI
- Two Minute Papers
- Machine Learning TV
- RANJI RAJ
- Data School
- Keith Galli
- Daniel Bourke
- StatQuest with Josh Starmer
- Data Professor
- Krish Naik
- Sentdex