MLEG
MLEG
one is when the fitness reaches a specific value, it stops the loop another is: when there is no progress on the best fitness for K generation, it stops the...
Elitism allows the GA population to always keep the top K best individuals and bring them to next generation. This feature is important to avoid losing good solutions over the...
roteinlm)xxxx@quant:~/ProteinLM/pretrain$ sh examples/pretrain_tape.sh using world size: 1, data-parallel-size: 1, tensor-model-parallel size: 1, pipeline-model-parallel size: 1 using torch.float16 for parameters ... WARNING: overriding default arguments for tokenizer_type:BertWordPieceLowerCase with tokenizer_type:BertWordPieceCase ------------------------ arguments...
which format should be sequence json file? do we need to add spaces between amino acids? in: https://github.com/THUDM/ProteinLM/tree/main/pretrain {"text": "GCTVEDRCLIGMGAILLNGCVIGSGSLVAAGALITQ"} {"text": "RTIKVRILHAIGFEGGLMLLTIPMVAYAMDMTLFQAILLDLSMTTCILVYTFIFQWCYDILENR"} https://github.com/THUDM/ProteinLM/tree/main/pretrain/protein_tools {"text": "G C T V E D...
i need this step to install grpcio on M1 chip mac: export GRPC_PYTHON_BUILD_SYSTEM_OPENSSL=1 export GRPC_PYTHON_BUILD_SYSTEM_ZLIB=1 pip install grpcio
**Description of the problem** pip install pyshtools got this error No such file or directory: '/var/folders/nz/j6p8yfhx1mv_0grj5xl4650h0000gp/T/abs_ce18o7jvqb/croots/recipe/python-split_1661469471615/_build_env/bin/llvm-ar' **System information** macbook pro
many materials science ML models are written with Pytorch instead of Tensorflow. If not, what can we do?
When we apply the charge neutrality check function of smact to the compositions of the materials project database, we find that up to 25% samples does not have charge neutrality...
This function returns a zero matrix def _phi(self, X, sigma=None): if sigma is None: sigma = self._sigma print(sigma , "****** sigma"); print(X.shape) print((X-self._test_vectors).shape) #exit(-1) if self._phi_fitted: #print(np.exp(-np.sum((X-self._test_vectors)**2, axis=-1)/(2*sigma**2))) return np.exp(-np.sum((X-self._test_vectors)**2,...