swyft icon indicating copy to clipboard operation
swyft copied to clipboard

A system for scientific simulation-based inference at scale.

swyft

For a new (more flexible) version of swyft based on pytorch-lightning see: https://github.com/undark-lab/swyft/tree/lightning

.. image:: https://badge.fury.io/py/swyft.svg :target: https://badge.fury.io/py/swyft :alt: PyPI version

.. .. image:: https://github.com/undark-lab/swyft/actions/workflows/tests.yml/badge.svg .. :target: https://github.com/undark-lab/swyft/actions .. :alt: Tests

.. .. image:: https://github.com/undark-lab/swyft/actions/workflows/syntax.yml/badge.svg .. :target: https://github.com/undark-lab/swyft/actions .. :alt: Syntax

.. image:: https://codecov.io/gh/undark-lab/swyft/branch/master/graph/badge.svg?token=E253LRJWWE :target: https://codecov.io/gh/undark-lab/swyft :alt: codecov

.. .. image:: https://readthedocs.org/projects/swyft/badge/?version=latest .. :target: https://swyft.readthedocs.io/en/latest/?badge=latest .. :alt: Documentation Status

.. .. image:: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat .. :target: https://github.com/undark-lab/swyft/blob/master/CONTRIBUTING.md .. :alt: Contributions welcome

.. .. image:: https://colab.research.google.com/assets/colab-badge.svg .. :target: https://colab.research.google.com/github/undark-lab/swyft/blob/master/notebooks/Quickstart.ipynb .. :alt: colab

.. image:: https://joss.theoj.org/papers/10.21105/joss.04205/status.svg :target: https://doi.org/10.21105/joss.04205

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5752734.svg :target: https://doi.org/10.5281/zenodo.5752734

swyft is the official implementation of Truncated Marginal Neural Ratio Estimation (TMNRE), a hyper-efficient, simulation-based inference technique for complex data and expensive simulators.

  • Documentation & installation: https://swyft.readthedocs.io/en/latest/
  • Example usage: https://swyft.readthedocs.io/en/latest/tutorial-notebooks.html
  • Source code: https://github.com/undark-lab/swyft
  • Support & discussion: https://github.com/undark-lab/swyft/discussions
  • Bug reports: https://github.com/undark-lab/swyft/issues
  • Contributing: https://swyft.readthedocs.io/en/latest/contributing-link.html
  • Citation: https://swyft.readthedocs.io/en/latest/citation.html

swyft:

  • estimates likelihood-to-evidence ratios for arbitrary marginal posteriors; they typically require fewer simulations than the corresponding joint.
  • performs targeted inference by prior truncation, combining simulation efficiency with empirical testability.
  • seamless reuses simulations drawn from previous analyses, even with different priors.
  • integrates dask <https://dask.org/>_ and zarr <https://zarr.readthedocs.io/en/stable/>_ to make complex simulation easy.

swyft is designed to solve the Bayesian inverse problem when the user has access to a simulator that stochastically maps parameters to observational data. In scientific settings, a cost-benefit analysis often favors approximating the posterior marginality; swyft provides this functionality. The package additionally implements our prior truncation technique, routines to empirically test results by estimating the expected coverage, and a dask <https://dask.org/>_ simulator manager with zarr <https://zarr.readthedocs.io/en/stable/>_ storage to simplify use with complex simulators.

Related

  • tmnre <https://github.com/bkmi/tmnre>_ is the implementation of the paper Truncated Marginal Neural Ratio Estimation <https://arxiv.org/abs/2107.01214>_.
  • v0.1.2 <https://github.com/undark-lab/swyft/releases/tag/v0.1.2>_ is the implementation of the paper Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time <https://arxiv.org/abs/2011.13951>_.
  • sbi <https://github.com/mackelab/sbi>_ is a collection of simulation-based inference methods. Unlike swyft, the repository does not include truncation nor marginal estimation of posteriors.