yolov5
yolov5 copied to clipboard
WARNING ⚠️ NMS time limit 0.340s exceeded
Search before asking
- [X] I have searched the YOLOv5 issues and found no similar bug report.
YOLOv5 Component
No response
Bug
Hi YOLO comunnity. so im running training on my cpu and i have this probleme notice that ive already checked on the previous simular issues and i found this time_limit = 0.1 + 0.02 * bs # seconds to quit after i applied it but the issue still here raidhani@raidhani-All-Series:~/catkin_ws/src/yolov5$ python3 train.py --img 640 --batch 6 --epochs 100 --data /home/raidhani/catkin_ws/src/data/data.yaml --weights yolov5s.pt train: weights=yolov5s.pt, cfg=, data=/home/raidhani/catkin_ws/src/data/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=100, batch_size=6, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data/hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False github: up to date with https://github.com/ultralytics/yolov5 ✅ YOLOv5 🚀 v7.0-368-gb163ff8d Python-3.8.10 torch-1.11.0+cpu CPU
hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ Overriding model.yaml nc=80 with nc=10
from n params module arguments
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 40455 models.yolo.Detect [10, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model summary: 214 layers, 7046599 parameters, 7046599 gradients, 16.0 GFLOPs
Transferred 343/349 items from yolov5s.pt optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.000515625), 60 bias train: Scanning /home/raidhani/catkin_ws/src/data/train/labels.cache... 1008 images, 120 backgrounds, 0 corrupt: 100%|█████████ val: Scanning /home/raidhani/catkin_ws/src/data/valid/labels.cache... 230 images, 31 backgrounds, 0 corrupt: 100%|██████████| 2
AutoAnchor: 4.51 anchors/target, 0.997 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅ Plotting labels to runs/train/exp11/labels.jpg... Image sizes 640 train, 640 val Using 6 dataloader workers Logging results to runs/train/exp11 Starting training for 100 epochs...
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
0/99 0G 0.1032 0.06545 0.05506 64 640: 100%|██████████| 169/169 [07:32<00:00, 2.68s/it
Class Images Instances P R mAP50 mAP50-95: 0%| | 0/20 [00:00<?, ?it/sWARNING ⚠️ NMS time limit 0.340s exceeded
Class Images Instances P R mAP50 mAP50-95: 5%|▌ | 1/20 [00:01<00:29, WARNING ⚠️ NMS time limit 0.340s exceeded
Class Images Instances P R mAP50 mAP50-95: 10%|█ | 2/20 [00:03<00:27, WARNING ⚠️ NMS time limit 0.340s exceeded
Class Images Instances P R mAP50 mAP50-95: 15%|█▌ | 3/20 [00:04<00:26, WARNING ⚠️ NMS time limit 0.340s exceeded
Class Images Instances P R mAP50 mAP50-95: 20%|██ | 4/20 [00:06<00:24, WARNING ⚠️ NMS time limit 0.340s exceeded
Class Images Instances P R mAP50 mAP50-95: 25%|██▌ | 5/20 [00:07<00:24, Class Images Instances P R mAP50 mAP50-95: 25%|██▌ | 5/20 [00:08<00:24,
Traceback (most recent call last):
File "train.py", line 986, in
Environment
YOLOv5 🚀 v7.0-368-gb163ff8d Python-3.8.10 torch-1.11.0+cpu CPU
Minimal Reproducible Example
python3 train.py --img 640 --batch 6 --epochs 100 --data /home/raidhani/catkin_ws/src/data/data.yaml --weights yolov5s.pt
Additional
No response
Are you willing to submit a PR?
- [ ] Yes I'd like to help by submitting a PR!
👋 Hello @haniraid, thank you for bringing this to our attention! This is an automated response, and an Ultralytics engineer will assist you soon.
For now, please ensure you've provided a minimum reproducible example. It helps us debug more effectively and speeds up the resolution process.
If you haven't already, you may want to explore our ⭐️ Tutorials for guidance on setup and configurations, and verify you are following our Tips for Best Training Results.
Requirements
Ensure your environment meets the following:
Python>=3.8.0 with all requirements.txt installed including PyTorch>=1.8. Start with:
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Environments
YOLOv5 can be run in any of these environments with pre-installed dependencies, including CUDA/CUDNN:
- Notebooks with free GPU:
- Google Cloud or AWS: See respective quickstart guides / AWS Quickstart Guide
- Docker Image: See Docker Quickstart Guide
Status
Check the current status of YOLOv5 CI tests:
Discover YOLOv8 🚀
Explore our latest release, YOLOv8 🚀. It's fast, accurate, and user-friendly for various tasks. Get started with:
pip install ultralytics
Please provide any additional context or information to assist us further. We're here to help! 😊
@haniraid the "NMS time limit exceeded" warning often indicates that your CPU is struggling with the workload. Consider reducing the batch size or using a machine with a GPU to improve performance. Additionally, ensure you're using the latest version of YOLOv5 and PyTorch. If the issue persists, please let us know.
👋 Hello there! We wanted to give you a friendly reminder that this issue has not had any recent activity and may be closed soon, but don't worry - you can always reopen it if needed. If you still have any questions or concerns, please feel free to let us know how we can help.
For additional resources and information, please see the links below:
- Docs: https://docs.ultralytics.com
- HUB: https://hub.ultralytics.com
- Community: https://community.ultralytics.com
Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!
Thank you for your contributions to YOLO 🚀 and Vision AI ⭐