hub icon indicating copy to clipboard operation
hub copied to clipboard

Ultratlytics部署与依赖工具版本兼容问题

Open cheng0029 opened this issue 9 months ago • 5 comments

这几天我一直在配置YOLO工作环境,但是一直都没有成功,原因如下: 1、系统采用python3.13.0以上版本,这可以安装Ultratlytics ,并且自带YOLO v11版本,但是始终无法安装好其深度学习框架tensorFlow(一直提示找不到对应的版本),果真通过tensorflow官网查询,获得以下信息: 系统要求 : Python 3.6–3.9 • 若要支持 Python 3.9,需要使用 TensorFlow 2.5 或更高版本。 • 若要支持 Python 3.8,需要使用 TensorFlow 2.2 或更高版本。 2、根据以上需求,我下载掉python 3.13.0版本,重新安装python3.9版本,则这个时候,通过pip命令能够顺利安装tensorFlow,通过pip list看到的版本号为 tensorflow 2.19.0,本以为大功告成,却在进行Ultratlytics 安装时,一直报错如下: Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple ERROR: Could not find a version that satisfies the requirement ultratlytics (from versions: none) ERROR: No matching distribution found for ultratlytics 系统又提示无法安装Ultratlytics,找不到匹配的版本。

我已经被彻底搞晕了,请各位高人指点,我就是要配置一个带有深度学习、能处理图像,和微调的系统环境,本计划采用YOLO v11,现在是装上它,其它工具装不上,装上其它工具,这YOLO任何版本都装不上,请指点,我该如何搭配,才能配置好我想要的环境?

cheng0029 avatar Mar 14 '25 09:03 cheng0029

👋 Hello @cheng0029, thank you for raising an issue about Ultralytics HUB 🚀! Please visit our HUB Docs to learn more:

  • Quickstart. Start training and deploying YOLO models with HUB in seconds.
  • Datasets: Preparing and Uploading. Learn how to prepare and upload your datasets to HUB in YOLO format.
  • Projects: Creating and Managing. Group your models into projects for improved organization.
  • Models: Training and Exporting. Train YOLOv5 and YOLOv8 models on your custom datasets and export them to various formats for deployment.
  • Integrations. Explore different integration options for your trained models, such as TensorFlow, ONNX, OpenVINO, CoreML, and PaddlePaddle.
  • Ultralytics HUB App. Learn about the Ultralytics App for iOS and Android, which allows you to run models directly on your mobile device.
    • iOS. Learn about YOLO CoreML models accelerated on Apple's Neural Engine on iPhones and iPads.
    • Android. Explore TFLite acceleration on mobile devices.
  • Inference API. Understand how to use the Inference API for running your trained models in the cloud to generate predictions.

If this is a 🐛 Bug Report, please provide screenshots and steps to reproduce your problem to help us get started working on a fix.

If this is a ❓ Question, please provide as much information as possible, including dataset, model, environment details, and the specific error logs or commands used, so that we might provide the most helpful response.

It seems the issue may be related to compatibility between your Python version, TensorFlow, and Ultralytics packages. For environment setup, please ensure you are using a compatible Python version (e.g., Python 3.8 or 3.9) and follow the installation instructions provided in our Ultralytics Docs. Additionally, please clarify whether you're using Ultralytics HUB or standalone YOLO installations, as they may have different dependencies.

This is an automated response to assist you as quickly as possible, but an Ultralytics engineer will review your issue and provide further assistance soon. Thank you for your patience! 😊

UltralyticsAssistant avatar Mar 14 '25 09:03 UltralyticsAssistant

@cheng0029 您好!感谢您对Ultralytics产品的关注。关于您遇到的安装问题,以下是专业建议:

  1. Python版本问题
    我们推荐使用Python 3.8-3.10版本,这是PyTorch和Ultralytics的最佳兼容范围。Python 3.13目前尚未被主流深度学习框架支持。

  2. 正确安装命令
    检测到您可能输入了拼写错误,正确的安装命令应为:

pip install ultralytics

(注意拼写是ultralytics而非ultratlytics

  1. PyTorch先行安装
    Ultralytics YOLO基于PyTorch框架,推荐使用此安装流程:
# 创建虚拟环境
conda create -n yolo_env python=3.9
conda activate yolo_env

# 安装PyTorch(根据CUDA版本选择)
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

# 安装Ultralytics
pip install ultralytics
  1. 快速验证安装
    安装完成后可通过以下命令验证:
from ultralytics import YOLO
model = YOLO('yolov8n.pt')  # 自动下载预训练模型
results = model.predict('https://ultralytics.com/images/bus.jpg')  # 测试推理
  1. TensorFlow注意事项
    YOLO11架构本身基于PyTorch实现,不需要TensorFlow即可运行。如果您有特殊需求需要同时使用TensorFlow,建议通过虚拟环境隔离安装。

建议参考我们的官方安装指南:

如果有其他具体错误信息,欢迎提供详细日志,我们将进一步协助排查。祝您配置顺利! 🚀

pderrenger avatar Mar 14 '25 21:03 pderrenger

谢谢指导,明天再次安装测试!

cheng0029 avatar Mar 16 '25 14:03 cheng0029

其实 ultralytics 安装是没问题的,目前发现安装完它之后无法操作管理它,现在我在电脑上也安装好了tensorflow,但无法启动使用,您说PyTorch构架就能实现YOLO11框架管理,又是如何配置和启动的呢?(我是个初学者,麻烦了)

cheng0029 avatar Mar 16 '25 14:03 cheng0029

您好!欢迎加入YOLO社区。关于YOLO11的配置和使用,请按以下步骤操作:

  1. PyTorch环境配置
conda create -n yolo_env python=3.9
conda activate yolo_env
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install ultralytics
  1. 快速验证框架
    创建test.py文件:
from ultralytics import YOLO

# 加载预训练模型(自动下载)
model = YOLO('yolo11n.pt')  

# 验证CUDA是否可用
print(f"可用GPU: {model.device}")  # 应显示类似cuda:0

# 执行推理
results = model.predict('https://ultralytics.com/images/bus.jpg')
results[0].show()  # 显示结果
  1. 基础训练配置
from ultralytics import YOLO

model = YOLO('yolo11n.yaml')  # 新建模型
# 或加载预训练模型:YOLO('yolo11n.pt')

# 启动训练(数据集配置参考下方文档)
model.train(
    data='coco8.yaml',
    epochs=100,
    imgsz=640,
    batch=16,
    device=0  # 指定第一个GPU
)

关键文档推荐:

初学者建议

  1. 通过nvidia-smi命令确认CUDA状态
  2. 首次运行时会自动下载预训练模型(约5MB)
  3. 推荐使用Ultralytics HUB的Web界面进行可视化训练管理

遇到具体错误时欢迎提供截图/日志,我们会协助分析。祝您快速掌握YOLO11的强大功能! 🚀

pderrenger avatar Mar 17 '25 00:03 pderrenger

Closed due to inactivity

asabri97 avatar Apr 02 '25 08:04 asabri97