class_activation_map
class_activation_map copied to clipboard
PyTorch implementation of "Learning Deep Features for Discriminative Localization"
Class Activation Map
Unofficial Pytorch Implementation of 'Learning Deep Features for Discriminative Localization'
Reference: Learning Deep Features for Discriminative Localization, CVPR2016
I used the Networks that trained ImageNet data from torchvision.models
.
Requirements
- torch (version: 1.2.0)
- torchvision (version: 0.4.0)
- Pillow (version: 6.1.0)
- matplotlib (version: 3.1.1)
- numpy (version: 1.16.5)
Usage
Arguments
-
--gpu-no
: Number of gpu device (-1: cpu, 0~n: gpu) -
--network
: Network for backbone (Possible networks: resnet50, resnext50_32x4d, wide_resnet50_2, googlenet, densenet161, inception_v3, shufflenet_v2_x1_0, mobilenet_v2, mnasnet1_0) -
--image
: Input image path -
--topk
: Create k Class Activation Maps (CAMs) with the highest probability -
--imsize
: Size to resize image (maintaining aspect ratio) -
--cropsize
: Size to crop cetenr region -
--blend-alpha
: Interpolation factor to overlay the input with CAM -
--save-path
: Path to save outputs
Example Script
python cam.py --image imgs/input/img1.jpg --topk 3 --imsize 256 --network resnet50