GNN based Recommender Systems
An index of recommendation algorithms that are based on Graph Neural Networks.
Our survey Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions is available on arxiv: link
Please cite our survey paper if this index is helpful.
@article{gao2021graph,
title={Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions},
author={Gao, Chen and Zheng, Yu and Li, Nian and Li, Yinfeng and Qin, Yingrong and Piao, Jinghua and Quan, Yuhan and Chang, Jianxin and Jin, Depeng and He, Xiangnan and others},
journal={arXiv preprint arXiv:2109.12843},
year={2021}
}
Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., Quan, Y., Chang, J., Jin, D., He, X., & Li, Y. (2021). Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. arXiv preprint arXiv:2109.12843.
Table of Contents
-
GNN in different recommendation stages
-
Matching
-
Ranking
-
Re-ranking
-
GNN in different recommendation scenarios
-
Social Recommendation
-
Sequential Recommendation
-
Session Recommendation
-
Bundle Recommendation
-
Cross Domain Recommendation
-
Multi-behavior Recommendation
-
GNN for different recommendation objectives
-
Diversity
-
Explainability
-
Fairness
Recommendation Stages
Matching
Name |
Paper |
Venue |
Year |
Code |
GCMC |
Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263. |
arxiv |
2017 |
Python |
Pin-Sage |
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 974-983). |
KDD |
2018 |
Python |
NGCF |
Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July). Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 165-174). |
SIGIR |
2019 |
Python |
DGCF |
Wang, X., Jin, H., Zhang, A., He, X., Xu, T., & Chua, T. S. (2020, July). Disentangled graph collaborative filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1001-1010). |
SIGIR |
2020 |
Python |
LightGCN |
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval (pp. 639-648). |
SIGIR |
2020 |
Python |
NIA-GCN |
Sun, J., Zhang, Y., Guo, W., Guo, H., Tang, R., He, X., ... & Coates, M. (2020, July). Neighbor interaction aware graph convolution networks for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1289-1298). |
SIGIR |
2020 |
NA |
SGL |
Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., & Xie, X. (2021, July). Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 726-735). |
SIGIR |
2021 |
Python |
Ranking
Name |
Paper |
Venue |
Year |
Code |
Fi-GNN |
Li, Z., Cui, Z., Wu, S., Zhang, X., & Wang, L. (2019, November). Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 539-548). |
CIKM |
2019 |
Python |
PUP |
Zheng, Y., Gao, C., He, X., Li, Y., & Jin, D. (2020, April). Price-aware recommendation with graph convolutional networks. In 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 133-144). IEEE. |
ICDE |
2020 |
Python |
L0-SIGN |
Su, Y., Zhang, R., Erfani, S., & Xu, Z. (2021, May). Detecting Beneficial Feature Interactions for Recommender Systems. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI). |
AAAI |
2021 |
Python |
DG-ENN |
Guo, W., Su, R., Tan, R., Guo, H., Zhang, Y., Liu, Z., ... & He, X. (2021). Dual Graph enhanced Embedding Neural Network for CTRPrediction. arXiv preprint arXiv:2106.00314. |
KDD |
2021 |
NA |
SHCF |
Li, C., Hu, L., Shi, C., Song, G., & Lu, Y. (2021). Sequence-aware Heterogeneous Graph Neural Collaborative Filtering. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 64-72). Society for Industrial and Applied Mathematics. |
SDM |
2021 |
Python |
GCM |
Wu, J., He, X., Wang, X., Wang, Q., Chen, W., Lian, J., & Xie, X. (2020). Graph Convolution Machine for Context-aware Recommender System. arXiv preprint arXiv:2001.11402. |
Frontiers of Computer Science |
2021 |
Python |
Re-ranking
Name |
Paper |
Venue |
Year |
Code |
IRGPR |
Liu, W., Liu, Q., Tang, R., Chen, J., He, X., & Heng, P. A. (2020, October). Personalized Re-ranking with Item Relationships for E-commerce. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 925-934). |
CIKM |
2020 |
NA |
Recommendation Scenarios
Social Recommendation
Name |
Paper |
Venue |
Year |
Code |
DGRec |
Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., & Tang, J. (2019, January). Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM international conference on web search and data mining (pp. 555-563). |
WSDM |
2019 |
Python |
GraphRec |
Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The World Wide Web Conference (pp. 417-426). |
WWW |
2019 |
Python |
DANSER |
Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., & Chen, G. (2019, May). Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In The World Wide Web Conference (pp. 2091-2102). |
WWW |
2019 |
Python |
DiffNet |
Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., & Wang, M. (2019, July). A neural influence diffusion model for social recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 235-244). |
SIGIR |
2019 |
Python |
RecoGCN |
Xu, F., Lian, J., Han, Z., Li, Y., Xu, Y., & Xie, X. (2019, November). Relation-aware graph convolutional networks for agent-initiated social e-commerce recommendation. In Proceedings of the 28th ACM international conference on information and knowledge management (pp. 529-538). |
CIKM |
2019 |
Python |
HGP |
Kim, K. M., Kwak, D., Kwak, H., Park, Y. J., Sim, S., Cho, J. H., ... & Ha, J. W. (2019). Tripartite heterogeneous graph propagation for large-scale social recommendation. arXiv preprint arXiv:1908.02569. |
RecSys |
2019 |
NA |
GAT-NSR |
Mu, N., Zha, D., He, Y., & Tang, Z. (2019, November). Graph attention networks for neural social recommendation. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1320-1327). IEEE. |
ICTAI |
2019 |
NA |
SR-HGNN |
Xu, H., Huang, C., Xu, Y., Xia, L., Xing, H., & Yin, D. (2020, November). Global context enhanced social recommendation with hierarchical graph neural networks. In 2020 IEEE International Conference on Data Mining (ICDM) (pp. 701-710). IEEE. |
ICDM |
2020 |
Python |
TGRec |
Bai, T., Zhang, Y., Wu, B., & Nie, J. Y. (2020, December). Temporal Graph Neural Networks for Social Recommendation. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 898-903). IEEE. |
ICBD |
2020 |
NA |
DiffNet++ |
Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., & Wang, M. (2020). Diffnet++: A neural influence and interest diffusion network for social recommendation. IEEE Transactions on Knowledge and Data Engineering. |
TKDE |
2020 |
Python |
ESRF |
Yu, J., Yin, H., Li, J., Gao, M., Huang, Z., & Cui, L. (2020). Enhance social recommendation with adversarial graph convolutional networks. IEEE Transactions on Knowledge and Data Engineering. |
TKDE |
2020 |
Python |
HOSR |
Liu, Y., Liang, C., He, X., Peng, J., Zheng, Z., & Tang, J. (2020). Modelling high-order social relations for item recommendation. IEEE Transactions on Knowledge and Data Engineering. |
TKDE |
2020 |
NA |
GNN-SoR |
Guo, Z., & Wang, H. (2020). A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 17(4), 2776-2783. |
TII |
2020 |
NA |
ASR |
Luo, D., Bian, Y., Zhang, X., & Huan, J. (2020). Attentive Social Recommendation: Towards User And Item Diversities. arXiv preprint arXiv:2011.04797. |
arxiv |
2020 |
Python |
KCGN |
Huang, C., Xu, H., Xu, Y., Dai, P., Xia, L., Lu, M., ... & Ye, Y. (2021, January). Knowledge-aware coupled graph neural network for social recommendation. In AAAI Conference on Artificial Intelligence (AAAI). |
AAAI |
2021 |
Python |
MHCN |
Yu, J., Yin, H., Li, J., Wang, Q., Hung, N. Q. V., & Zhang, X. (2021, April). Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation. In Proceedings of the Web Conference 2021 (pp. 413-424). |
WWW |
2021 |
Python |
GBGCN |
Zhang, J., Gao, C., Jin, D., & Li, Y. (2021, April). Group-Buying Recommendation for Social E-Commerce. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1536-1547). IEEE. |
ICDE |
2021 |
Python |
SEPT |
Yu, J., Yin, H., Gao, M., Xia, X., Zhang, X., & Hung, N. Q. V. (2021). Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv preprint arXiv:2106.03569. |
KDD |
2021 |
Python |
DiffNetLG |
Song, C., Wang, B., Jiang, Q., Zhang, Y., He, R., & Hou, Y. (2021, July). Social Recommendation with Implicit Social Influence. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1788-1792). |
SIGIR |
2021 |
NA |
Sequential Recommendation
Name |
Paper |
Venue |
Year |
Code |
GME |
Xie, M., Yin, H., Xu, F., Wang, H., & Zhou, X. (2016, November). Graph-based metric embedding for next poi recommendation. In International Conference on Web Information Systems Engineering (pp. 207-222). Springer, Cham. |
WISE |
2016 |
NA |
MA-GNN |
Ma, C., Ma, L., Zhang, Y., Sun, J., Liu, X., & Coates, M. (2020, April). Memory augmented graph neural networks for sequential recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5045-5052). |
AAAI |
2020 |
NA |
ISSR |
Liu, F., Liu, W., Li, X., & Ye, Y. (2020). Inter-sequence Enhanced Framework for Personalized Sequential Recommendation. arXiv preprint arXiv:2004.12118. |
AAAI |
2020 |
NA |
STP-UDGAT |
Lim, N., Hooi, B., Ng, S. K., Wang, X., Goh, Y. L., Weng, R., & Varadarajan, J. (2020, October). STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 845-854). |
CIKM |
2020 |
NA |
GPR |
Chang, B., Jang, G., Kim, S., & Kang, J. (2020, October). Learning graph-based geographical latent representation for point-of-interest recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 135-144). |
CIKM |
2020 |
NA |
Wang et al. |
Wang, B., & Cai, W. (2020). Knowledge-enhanced graph neural networks for sequential recommendation. Information, 11(8), 388. |
Information |
2020 |
NA |
SGRec |
Li, Y., Chen, T., Yin, H., & Huang, Z. (2021). Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation. arXiv preprint arXiv:2106.15814. |
IJCAI |
2021 |
NA |
RetaGNN |
Hsu, C., & Li, C. T. (2021, April). RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation. In Proceedings of the Web Conference 2021 (pp. 2968-2979). |
WWW |
2021 |
Python |
SURGE |
Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y. (2021, July). Sequential Recommendation with Graph Neural Networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 378-387). |
SIGIR |
2021 |
Python |
TGSRec |
Fan, Z., Liu, Z., Zhang, J., Xiong, Y., Zheng, L., & Yu, P. S. (2021). Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer. arXiv preprint arXiv:2108.06625. |
CIKM |
2021 |
Python |
GES-SASRec |
Zhu, T., Sun, L., & Chen, G. (2021). Graph-based Embedding Smoothing for Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering. |
TKDE |
2021 |
Python |
DGSR |
Zhang, M., Wu, S., Yu, X., & Wang, L. (2021). Dynamic Graph Neural Networks for Sequential Recommendation. arXiv preprint arXiv:2104.07368. |
arxiv |
2021 |
NA |
Session Recommendation
Name |
Paper |
Venue |
Year |
Code |
SR-GNN |
Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019, July). Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 346-353). |
AAAI |
2019 |
Python |
GC-SAN |
Xu, C., Zhao, P., Liu, Y., Sheng, V. S., Xu, J., Zhuang, F., ... & Zhou, X. (2019, August). Graph Contextualized Self-Attention Network for Session-based Recommendation. In IJCAI (Vol. 19, pp. 3940-3946). |
IJCAI |
2019 |
Python |
FGNN |
Qiu, R., Li, J., Huang, Z., & Yin, H. (2019, November). Rethinking the item order in session-based recommendation with graph neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 579-588). |
CIKM |
2019 |
Python |
MGNN-SPred |
Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). |
WWW |
2020 |
Python |
LESSR |
Chen, T., & Wong, R. C. W. (2020, August). Handling information loss of graph neural networks for session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1172-1180). |
KDD |
2020 |
Python |
TA-GNN |
Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., & Tan, T. (2020, July). TAGNN: Target attentive graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1921-1924). |
SIGIR |
2020 |
Python |
GCE-GNN |
Wang, Z., Wei, W., Cong, G., Li, X. L., Mao, X. L., & Qiu, M. (2020, July). Global context enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 169-178). |
SIGIR |
2020 |
Python |
MKM-SR |
Meng, W., Yang, D., & Xiao, Y. (2020, July). Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1091-1100). |
SIGIR |
2020 |
Python |
GAG |
Qiu, R., Yin, H., Huang, Z., & Chen, T. (2020, July). Gag: Global attributed graph neural network for streaming session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 669-678). |
SIGIR |
2020 |
Python |
SGNN-HN |
Pan, Z., Cai, F., Chen, W., Chen, H., & de Rijke, M. (2020, October). Star graph neural networks for session-based recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1195-1204). |
CIKM |
2020 |
NA |
CAGE |
Sheu, H. S., & Li, S. (2020, September). Context-aware graph embedding for session-based news recommendation. In Fourteenth ACM conference on recommender systems (pp. 657-662). |
RecSys |
2020 |
NA |
A-PGNN |
Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., & Wang, L. (2020). Personalized graph neural networks with attention mechanism for session-aware recommendation. IEEE Transactions on Knowledge and Data Engineering. |
TKDE |
2020 |
Python |
DGTN |
Zheng, Y., Liu, S., Li, Z., & Wu, S. (2020, November). DGTN: Dual-channel Graph Transition Network for Session-based Recommendation. In 2020 International Conference on Data Mining Workshops (ICDMW) (pp. 236-242). IEEE. |
ICDMW |
2020 |
Python |
DHCN |
Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., & Zhang, X. (2020). Self-supervised hypergraph convolutional networks for session-based recommendation. arXiv preprint arXiv:2012.06852. |
AAAI |
2021 |
Python |
SERec |
Chen, T., & Wong, R. C. W. (2021, March). An Efficient and Effective Framework for Session-based Social Recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 400-408). |
WSDM |
2021 |
Python |
TASRec |
Zhou, H., Tan, Q., Huang, X., Zhou, K., & Wang, X. (2021). Temporal Augmented Graph Neural Networks for Session-Based Recommendations. |
SIGIR |
2021 |
NA |
DAT-MDI |
Chen, C., Guo, J., & Song, B. (2021, July). Dual Attention Transfer in Session-based Recommendation with Multi-dimensional Integration. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 869-878). |
SIGIR |
2021 |
NA |
COTREC |
Xia, X., Yin, H., Yu, J., Shao, Y., & Cui, L. (2021). Self-Supervised Graph Co-Training for Session-based Recommendation. arXiv preprint arXiv:2108.10560. |
CIKM |
2021 |
Python |
SHARE |
Wang, J., Ding, K., Zhu, Z., & Caverlee, J. (2021). Session-based Recommendation with Hypergraph Attention Networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 82-90). Society for Industrial and Applied Mathematics. |
SDM |
2021 |
NA |
Bundle Recommendation
Name |
Paper |
Venue |
Year |
Code |
BGCN |
Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Bundle recommendation with graph convolutional networks. In Proceedings of the 43rd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 1673-1676). |
SIGIR |
2020 |
Python |
HFGN |
Li, X., Wang, X., He, X., Chen, L., Xiao, J., & Chua, T. S. (2020, July). Hierarchical fashion graph network for personalized outfit recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 159-168). |
SIGIR |
2020 |
Python |
BundleNet |
Deng, Q., Wang, K., Zhao, M., Zou, Z., Wu, R., Tao, J., ... & Chen, L. (2020, October). Personalized Bundle Recommendation in Online Games. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2381-2388). |
CIKM |
2020 |
NA |
DPR |
Zheng, Z., Wang, C., Xu, T., Shen, D., Qin, P., Huai, B., ... & Chen, E. (2021, April). Drug Package Recommendation via Interaction-aware Graph Induction. In Proceedings of the Web Conference 2021 (pp. 1284-1295). |
WWW |
2021 |
NA |
Cross Domain Recommendation
Name |
Paper |
Venue |
Year |
Code |
PPGN |
Zhao, C., Li, C., & Fu, C. (2019, November). Cross-domain recommendation via preference propagation graphnet. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2165-2168). |
CIKM |
2019 |
Python |
BiTGCF |
Liu, M., Li, J., Li, G., & Pan, P. (2020, October). Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 885-894). |
CIKM |
2020 |
Python |
DAN |
Wang, B., Zhang, C., Zhang, H., Lyu, X., & Tang, Z. (2020, October). Dual Autoencoder Network with Swap Reconstruction for Cold-Start Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2249-2252). |
CIKM |
2020 |
NA |
HeroGRAPH |
Cui, Q., Wei, T., Zhang, Y., & Zhang, Q. (2020). HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation. In ORSUM@ RecSys. |
RecSys |
2020 |
Python |
DAGCN |
Guo, L., Tang, L., Chen, T., Zhu, L., Nguyen, Q. V. H., & Yin, H. (2021). DA-GCN: A Domain-aware Attentive Graph Convolution Network for Shared-account Cross-domain Sequential Recommendation. arXiv preprint arXiv:2105.03300. |
IJCAI |
2021 |
NA |
Multi-behavior Recommendation
Name |
Paper |
Venue |
Year |
Code |
MGNN-SPred |
Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). |
WWW |
2020 |
Python |
MBGCN |
Jin, B., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Multi-behavior recommendation with graph convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 659-668). |
SIGIR |
2020 |
NA |
MGNN |
Zhang, W., Mao, J., Cao, Y., & Xu, C. (2020, October). Multiplex Graph Neural Networks for Multi-behavior Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2313-2316). |
CIKM |
2020 |
NA |
KHGT |
Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, X., Yang, H., ... & Bo, L. (2021, May). Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 4486-4493). |
AAAI |
2021 |
Python |
GHCF |
Chen, C., Ma, W., Zhang, M., Wang, Z., He, X., Wang, C., ... & Ma, S. (2021, May). Graph Heterogeneous Multi-Relational Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 3958-3966). |
AAAI |
2021 |
Python |
GNMR |
Xia, L., Huang, C., Xu, Y., Dai, P., Lu, M., & Bo, L. (2021, April). Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1931-1936). IEEE. |
ICDE |
2021 |
Python |
DMBGN |
Xiao, F., Li, L., Xu, W., Zhao, J., Yang, X., Lang, J., & Wang, H. (2021). DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction. arXiv preprint arXiv:2106.03356. |
KDD |
2021 |
Python |
MB-GMN |
Xia, L., Xu, Y., Huang, C., Dai, P., & Bo, L. (2021, July). Graph meta network for multi-behavior recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 757-766). |
SIGIR |
2021 |
Python |
HMG-CR |
Yang, H., Chen, H., Li, L., Yu, P. S., & Xu, G. (2021). Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. arXiv preprint arXiv:2109.02859. |
ICDM |
2021 |
Python |
LP-MRGNN |
Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2021). Incorporating Link Prediction into Multi-Relational Item Graph Modeling for Session-based Recommendation. IEEE Transactions on Knowledge and Data Engineering. |
TKDE |
2021 |
NA |
GNNH |
Yu, B., Zhang, R., Chen, W., & Fang, J. (2021). Graph neural network based model for multi-behavior session-based recommendation. GeoInformatica, 1-19. |
GeoInformatica |
2021 |
NA |
Recommendation Objectives
Diversity
Name |
Paper |
Venue |
Year |
Code |
V2HT |
Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., & Nie, L. (2019, November). Long-tail hashtag recommendation for micro-videos with graph convolutional network. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 509-518). |
CIKM |
2019 |
NA |
BGCF |
Sun, J., Guo, W., Zhang, D., Zhang, Y., Regol, F., Hu, Y., ... & Coates, M. (2020, August). A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2030-2039). |
KDD |
2020 |
Python |
DGCN |
Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. (2021, April). DGCN: Diversified Recommendation with Graph Convolutional Networks. In Proceedings of the Web Conference 2021 (pp. 401-412). |
WWW |
2021 |
Python |
FH-HAT |
Xie, R., Liu, Q., Liu, S., Zhang, Z., Cui, P., Zhang, B., & Lin, L. (2021). Improving Accuracy and Diversity in Matching of Recommendation with Diversified Preference Network. arXiv preprint arXiv:2102.03787. |
TBD |
2021 |
NA |
Isufi et al. |
Isufi, E., Pocchiari, M., & Hanjalic, A. (2021). Accuracy-diversity trade-off in recommender systems via graph convolutions. Information Processing & Management, 58(2), 102459. |
IPM |
2021 |
Python |
Explainability
Name |
Paper |
Venue |
Year |
Code |
RippleNet |
Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., & Guo, M. (2018, October). Ripplenet: Propagating user preferences on the knowledge graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 417-426). |
CIKM |
2018 |
Python |
KPRN |
Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019, July). Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 5329-5336). |
AAAI |
2019 |
Python |
RuleRec |
Ma, W., Zhang, M., Cao, Y., Jin, W., Wang, C., Liu, Y., ... & Ren, X. (2019, May). Jointly learning explainable rules for recommendation with knowledge graph. In The World Wide Web Conference (pp. 1210-1221). |
WWW |
2019 |
Python |
KGAT |
Wang, X., He, X., Cao, Y., Liu, M., & Chua, T. S. (2019, July). Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 950-958). |
KDD |
2019 |
Python |
PGPR |
Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., & Zhang, Y. (2019, July). Reinforcement knowledge graph reasoning for explainable recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 285-294). |
SIGIR |
2019 |
Python |
ECFKG |
Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. |
ICML |
2019 |
Python |
EIUM |
Huang, X., Fang, Q., Qian, S., Sang, J., Li, Y., & Xu, C. (2019, October). Explainable interaction-driven user modeling over knowledge graph for sequential recommendation. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 548-556). |
MM |
2019 |
NA |
HAGERec |
Yang, Z., & Dong, S. (2020). HAGERec: hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation. Knowledge-Based Systems, 204, 106194. |
KBS |
2020 |
NA |
TMER |
Chen, H., Li, Y., Sun, X., Xu, G., & Yin, H. (2021, March). Temporal meta-path guided explainable recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 1056-1064). |
WSDM |
2021 |
Python |
Fairness
Name |
Paper |
Venue |
Year |
Code |
Fairwalk |
Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards fair graph embedding. |
IJCAI |
2019 |
Python |
CFCGE |
Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. |
ICML |
2019 |
Python |
FairGNN |
Dai, E., & Wang, S. (2021, March). Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 680-688). |
WSDM |
2021 |
Python |
FairGo |
Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., & Wang, M. (2021, April). Learning Fair Representations for Recommendation: A Graph-based Perspective. In Proceedings of the Web Conference 2021 (pp. 2198-2208). |
WWW |
2021 |
Python |