SpectralKit.jl
SpectralKit.jl copied to clipboard
Building blocks of spectral methods for Julia.
SpectralKit.jl
Building blocks of spectral methods for Julia. Currently includes Chebyshev polynomials on univariate and Smolyak (multivariate) grids, with domain transformations to semi-infinite and infinite domains.
Introduction
Mostly useful for algorithms along the lines of
Boyd, John P. Chebyshev and Fourier spectral methods. 2001.
The aim is to provide simple, well-tested, robust, and fast building blocks for spectral algorithms, which can be easily combined into algorithms.
At the moment, the package API is experimental and subject to change.
Help
Asking for help in issues is fine, you can also ping me as @Tamas_Papp
on the Discourse forum
Pretty pictures
Some examples generated this library. Circles mark values at the limit, shifted horizontally when this is needed to avoid overlap. Infinite limits shown at finite values, so of course they don't match (this is a visual check of continuity, naturally it is unit tested).
Chebyshev polynomials and their derivatives


Chebyshev rational functions on [0,∞)
Up close, you can see the oscillation.

Let's zoom out a bit to see convergence to 0 at ∞.

Derivatives die out faster.

Chebyshev rational functions on (-∞,∞)
Up close, you can see the oscillation.

Let's zoom out a bit to see convergence at -∞ and ∞.

Derivatives die out slower than for the [0,∞) transformation.

A Smolyak grid
With B = 3
.

Bibliography
-
Boyd, J. P. (2001). Chebyshev and fourier spectral methods. Courier Corporation.
-
Xu, K. (2016). The chebyshev points of the first kind. Applied Numerical Mathematics, 102, 17–30.